Source Code
Overview
APE Balance
0 APE
More Info
ContractCreator
Latest 4 internal transactions
Parent Transaction Hash | Block | From | To | |||
---|---|---|---|---|---|---|
13746890 | 4 days ago | Contract Creation | 0 APE | |||
13746890 | 4 days ago | 0 APE | ||||
13746486 | 4 days ago | Contract Creation | 0 APE | |||
13746486 | 4 days ago | Contract Creation | 0 APE |
Loading...
Loading
This contract may be a proxy contract. Click on More Options and select Is this a proxy? to confirm and enable the "Read as Proxy" & "Write as Proxy" tabs.
Contract Source Code Verified (Exact Match)
Contract Name:
SimpleAccountFactory
Compiler Version
v0.8.23+commit.f704f362
Optimization Enabled:
Yes with 1000000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; import "@openzeppelin/contracts/utils/Create2.sol"; import "@openzeppelin/contracts/proxy/ERC1967/ERC1967Proxy.sol"; import "./SimpleAccount.sol"; /** * A sample factory contract for SimpleAccount * A UserOperations "initCode" holds the address of the factory, and a method call (to createAccount, in this sample factory). * The factory's createAccount returns the target account address even if it is already installed. * This way, the entryPoint.getSenderAddress() can be called either before or after the account is created. */ contract SimpleAccountFactory { SimpleAccount public immutable accountImplementation; constructor(IEntryPoint _entryPoint) { accountImplementation = new SimpleAccount(_entryPoint); } /** * create an account, and return its address. * returns the address even if the account is already deployed. * Note that during UserOperation execution, this method is called only if the account is not deployed. * This method returns an existing account address so that entryPoint.getSenderAddress() would work even after account creation */ function createAccount(address owner,uint256 salt) public returns (SimpleAccount ret) { address addr = getAddress(owner, salt); uint256 codeSize = addr.code.length; if (codeSize > 0) { return SimpleAccount(payable(addr)); } ret = SimpleAccount(payable(new ERC1967Proxy{salt : bytes32(salt)}( address(accountImplementation), abi.encodeCall(SimpleAccount.initialize, (owner)) ))); } /** * calculate the counterfactual address of this account as it would be returned by createAccount() */ function getAddress(address owner,uint256 salt) public view returns (address) { return Create2.computeAddress(bytes32(salt), keccak256(abi.encodePacked( type(ERC1967Proxy).creationCode, abi.encode( address(accountImplementation), abi.encodeCall(SimpleAccount.initialize, (owner)) ) ))); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-empty-blocks */ import "../interfaces/IAccount.sol"; import "../interfaces/IEntryPoint.sol"; import "./UserOperationLib.sol"; /** * Basic account implementation. * This contract provides the basic logic for implementing the IAccount interface - validateUserOp * Specific account implementation should inherit it and provide the account-specific logic. */ abstract contract BaseAccount is IAccount { using UserOperationLib for PackedUserOperation; /** * Return the account nonce. * This method returns the next sequential nonce. * For a nonce of a specific key, use `entrypoint.getNonce(account, key)` */ function getNonce() public view virtual returns (uint256) { return entryPoint().getNonce(address(this), 0); } /** * Return the entryPoint used by this account. * Subclass should return the current entryPoint used by this account. */ function entryPoint() public view virtual returns (IEntryPoint); /// @inheritdoc IAccount function validateUserOp( PackedUserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds ) external virtual override returns (uint256 validationData) { _requireFromEntryPoint(); validationData = _validateSignature(userOp, userOpHash); _validateNonce(userOp.nonce); _payPrefund(missingAccountFunds); } /** * Ensure the request comes from the known entrypoint. */ function _requireFromEntryPoint() internal view virtual { require( msg.sender == address(entryPoint()), "account: not from EntryPoint" ); } /** * Validate the signature is valid for this message. * @param userOp - Validate the userOp.signature field. * @param userOpHash - Convenient field: the hash of the request, to check the signature against. * (also hashes the entrypoint and chain id) * @return validationData - Signature and time-range of this operation. * <20-byte> aggregatorOrSigFail - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an aggregator contract. * <6-byte> validUntil - last timestamp this operation is valid. 0 for "indefinite" * <6-byte> validAfter - first timestamp this operation is valid * If the account doesn't use time-range, it is enough to return * SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function _validateSignature( PackedUserOperation calldata userOp, bytes32 userOpHash ) internal virtual returns (uint256 validationData); /** * Validate the nonce of the UserOperation. * This method may validate the nonce requirement of this account. * e.g. * To limit the nonce to use sequenced UserOps only (no "out of order" UserOps): * `require(nonce < type(uint64).max)` * For a hypothetical account that *requires* the nonce to be out-of-order: * `require(nonce & type(uint64).max == 0)` * * The actual nonce uniqueness is managed by the EntryPoint, and thus no other * action is needed by the account itself. * * @param nonce to validate * * solhint-disable-next-line no-empty-blocks */ function _validateNonce(uint256 nonce) internal view virtual { } /** * Sends to the entrypoint (msg.sender) the missing funds for this transaction. * SubClass MAY override this method for better funds management * (e.g. send to the entryPoint more than the minimum required, so that in future transactions * it will not be required to send again). * @param missingAccountFunds - The minimum value this method should send the entrypoint. * This value MAY be zero, in case there is enough deposit, * or the userOp has a paymaster. */ function _payPrefund(uint256 missingAccountFunds) internal virtual { if (missingAccountFunds != 0) { (bool success, ) = payable(msg.sender).call{ value: missingAccountFunds, gas: type(uint256).max }(""); (success); //ignore failure (its EntryPoint's job to verify, not account.) } } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; /* solhint-disable no-inline-assembly */ /* * For simulation purposes, validateUserOp (and validatePaymasterUserOp) * must return this value in case of signature failure, instead of revert. */ uint256 constant SIG_VALIDATION_FAILED = 1; /* * For simulation purposes, validateUserOp (and validatePaymasterUserOp) * return this value on success. */ uint256 constant SIG_VALIDATION_SUCCESS = 0; /** * Returned data from validateUserOp. * validateUserOp returns a uint256, which is created by `_packedValidationData` and * parsed by `_parseValidationData`. * @param aggregator - address(0) - The account validated the signature by itself. * address(1) - The account failed to validate the signature. * otherwise - This is an address of a signature aggregator that must * be used to validate the signature. * @param validAfter - This UserOp is valid only after this timestamp. * @param validaUntil - This UserOp is valid only up to this timestamp. */ struct ValidationData { address aggregator; uint48 validAfter; uint48 validUntil; } /** * Extract sigFailed, validAfter, validUntil. * Also convert zero validUntil to type(uint48).max. * @param validationData - The packed validation data. */ function _parseValidationData( uint256 validationData ) pure returns (ValidationData memory data) { address aggregator = address(uint160(validationData)); uint48 validUntil = uint48(validationData >> 160); if (validUntil == 0) { validUntil = type(uint48).max; } uint48 validAfter = uint48(validationData >> (48 + 160)); return ValidationData(aggregator, validAfter, validUntil); } /** * Helper to pack the return value for validateUserOp. * @param data - The ValidationData to pack. */ function _packValidationData( ValidationData memory data ) pure returns (uint256) { return uint160(data.aggregator) | (uint256(data.validUntil) << 160) | (uint256(data.validAfter) << (160 + 48)); } /** * Helper to pack the return value for validateUserOp, when not using an aggregator. * @param sigFailed - True for signature failure, false for success. * @param validUntil - Last timestamp this UserOperation is valid (or zero for infinite). * @param validAfter - First timestamp this UserOperation is valid. */ function _packValidationData( bool sigFailed, uint48 validUntil, uint48 validAfter ) pure returns (uint256) { return (sigFailed ? 1 : 0) | (uint256(validUntil) << 160) | (uint256(validAfter) << (160 + 48)); } /** * keccak function over calldata. * @dev copy calldata into memory, do keccak and drop allocated memory. Strangely, this is more efficient than letting solidity do it. */ function calldataKeccak(bytes calldata data) pure returns (bytes32 ret) { assembly ("memory-safe") { let mem := mload(0x40) let len := data.length calldatacopy(mem, data.offset, len) ret := keccak256(mem, len) } } /** * The minimum of two numbers. * @param a - First number. * @param b - Second number. */ function min(uint256 a, uint256 b) pure returns (uint256) { return a < b ? a : b; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; /* solhint-disable no-inline-assembly */ import "../interfaces/PackedUserOperation.sol"; import {calldataKeccak, min} from "./Helpers.sol"; /** * Utility functions helpful when working with UserOperation structs. */ library UserOperationLib { uint256 public constant PAYMASTER_VALIDATION_GAS_OFFSET = 20; uint256 public constant PAYMASTER_POSTOP_GAS_OFFSET = 36; uint256 public constant PAYMASTER_DATA_OFFSET = 52; /** * Get sender from user operation data. * @param userOp - The user operation data. */ function getSender( PackedUserOperation calldata userOp ) internal pure returns (address) { address data; //read sender from userOp, which is first userOp member (saves 800 gas...) assembly { data := calldataload(userOp) } return address(uint160(data)); } /** * Relayer/block builder might submit the TX with higher priorityFee, * but the user should not pay above what he signed for. * @param userOp - The user operation data. */ function gasPrice( PackedUserOperation calldata userOp ) internal view returns (uint256) { unchecked { (uint256 maxPriorityFeePerGas, uint256 maxFeePerGas) = unpackUints(userOp.gasFees); if (maxFeePerGas == maxPriorityFeePerGas) { //legacy mode (for networks that don't support basefee opcode) return maxFeePerGas; } return min(maxFeePerGas, maxPriorityFeePerGas + block.basefee); } } /** * Pack the user operation data into bytes for hashing. * @param userOp - The user operation data. */ function encode( PackedUserOperation calldata userOp ) internal pure returns (bytes memory ret) { address sender = getSender(userOp); uint256 nonce = userOp.nonce; bytes32 hashInitCode = calldataKeccak(userOp.initCode); bytes32 hashCallData = calldataKeccak(userOp.callData); bytes32 accountGasLimits = userOp.accountGasLimits; uint256 preVerificationGas = userOp.preVerificationGas; bytes32 gasFees = userOp.gasFees; bytes32 hashPaymasterAndData = calldataKeccak(userOp.paymasterAndData); return abi.encode( sender, nonce, hashInitCode, hashCallData, accountGasLimits, preVerificationGas, gasFees, hashPaymasterAndData ); } function unpackUints( bytes32 packed ) internal pure returns (uint256 high128, uint256 low128) { return (uint128(bytes16(packed)), uint128(uint256(packed))); } //unpack just the high 128-bits from a packed value function unpackHigh128(bytes32 packed) internal pure returns (uint256) { return uint256(packed) >> 128; } // unpack just the low 128-bits from a packed value function unpackLow128(bytes32 packed) internal pure returns (uint256) { return uint128(uint256(packed)); } function unpackMaxPriorityFeePerGas(PackedUserOperation calldata userOp) internal pure returns (uint256) { return unpackHigh128(userOp.gasFees); } function unpackMaxFeePerGas(PackedUserOperation calldata userOp) internal pure returns (uint256) { return unpackLow128(userOp.gasFees); } function unpackVerificationGasLimit(PackedUserOperation calldata userOp) internal pure returns (uint256) { return unpackHigh128(userOp.accountGasLimits); } function unpackCallGasLimit(PackedUserOperation calldata userOp) internal pure returns (uint256) { return unpackLow128(userOp.accountGasLimits); } function unpackPaymasterVerificationGasLimit(PackedUserOperation calldata userOp) internal pure returns (uint256) { return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET])); } function unpackPostOpGasLimit(PackedUserOperation calldata userOp) internal pure returns (uint256) { return uint128(bytes16(userOp.paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET])); } function unpackPaymasterStaticFields( bytes calldata paymasterAndData ) internal pure returns (address paymaster, uint256 validationGasLimit, uint256 postOpGasLimit) { return ( address(bytes20(paymasterAndData[: PAYMASTER_VALIDATION_GAS_OFFSET])), uint128(bytes16(paymasterAndData[PAYMASTER_VALIDATION_GAS_OFFSET : PAYMASTER_POSTOP_GAS_OFFSET])), uint128(bytes16(paymasterAndData[PAYMASTER_POSTOP_GAS_OFFSET : PAYMASTER_DATA_OFFSET])) ); } /** * Hash the user operation data. * @param userOp - The user operation data. */ function hash( PackedUserOperation calldata userOp ) internal pure returns (bytes32) { return keccak256(encode(userOp)); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity >=0.7.5; import "./PackedUserOperation.sol"; interface IAccount { /** * Validate user's signature and nonce * the entryPoint will make the call to the recipient only if this validation call returns successfully. * signature failure should be reported by returning SIG_VALIDATION_FAILED (1). * This allows making a "simulation call" without a valid signature * Other failures (e.g. nonce mismatch, or invalid signature format) should still revert to signal failure. * * @dev Must validate caller is the entryPoint. * Must validate the signature and nonce * @param userOp - The operation that is about to be executed. * @param userOpHash - Hash of the user's request data. can be used as the basis for signature. * @param missingAccountFunds - Missing funds on the account's deposit in the entrypoint. * This is the minimum amount to transfer to the sender(entryPoint) to be * able to make the call. The excess is left as a deposit in the entrypoint * for future calls. Can be withdrawn anytime using "entryPoint.withdrawTo()". * In case there is a paymaster in the request (or the current deposit is high * enough), this value will be zero. * @return validationData - Packaged ValidationData structure. use `_packValidationData` and * `_unpackValidationData` to encode and decode. * <20-byte> sigAuthorizer - 0 for valid signature, 1 to mark signature failure, * otherwise, an address of an "authorizer" contract. * <6-byte> validUntil - Last timestamp this operation is valid. 0 for "indefinite" * <6-byte> validAfter - First timestamp this operation is valid * If an account doesn't use time-range, it is enough to * return SIG_VALIDATION_FAILED value (1) for signature failure. * Note that the validation code cannot use block.timestamp (or block.number) directly. */ function validateUserOp( PackedUserOperation calldata userOp, bytes32 userOpHash, uint256 missingAccountFunds ) external returns (uint256 validationData); }
// SPDX-License-Identifier: GPL-3.0 pragma solidity >=0.7.5; import "./PackedUserOperation.sol"; /** * Aggregated Signatures validator. */ interface IAggregator { /** * Validate aggregated signature. * Revert if the aggregated signature does not match the given list of operations. * @param userOps - Array of UserOperations to validate the signature for. * @param signature - The aggregated signature. */ function validateSignatures( PackedUserOperation[] calldata userOps, bytes calldata signature ) external view; /** * Validate signature of a single userOp. * This method should be called by bundler after EntryPointSimulation.simulateValidation() returns * the aggregator this account uses. * First it validates the signature over the userOp. Then it returns data to be used when creating the handleOps. * @param userOp - The userOperation received from the user. * @return sigForUserOp - The value to put into the signature field of the userOp when calling handleOps. * (usually empty, unless account and aggregator support some kind of "multisig". */ function validateUserOpSignature( PackedUserOperation calldata userOp ) external view returns (bytes memory sigForUserOp); /** * Aggregate multiple signatures into a single value. * This method is called off-chain to calculate the signature to pass with handleOps() * bundler MAY use optimized custom code perform this aggregation. * @param userOps - Array of UserOperations to collect the signatures from. * @return aggregatedSignature - The aggregated signature. */ function aggregateSignatures( PackedUserOperation[] calldata userOps ) external view returns (bytes memory aggregatedSignature); }
/** ** Account-Abstraction (EIP-4337) singleton EntryPoint implementation. ** Only one instance required on each chain. **/ // SPDX-License-Identifier: GPL-3.0 pragma solidity >=0.7.5; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ /* solhint-disable reason-string */ import "./PackedUserOperation.sol"; import "./IStakeManager.sol"; import "./IAggregator.sol"; import "./INonceManager.sol"; interface IEntryPoint is IStakeManager, INonceManager { /*** * An event emitted after each successful request. * @param userOpHash - Unique identifier for the request (hash its entire content, except signature). * @param sender - The account that generates this request. * @param paymaster - If non-null, the paymaster that pays for this request. * @param nonce - The nonce value from the request. * @param success - True if the sender transaction succeeded, false if reverted. * @param actualGasCost - Actual amount paid (by account or paymaster) for this UserOperation. * @param actualGasUsed - Total gas used by this UserOperation (including preVerification, creation, * validation and execution). */ event UserOperationEvent( bytes32 indexed userOpHash, address indexed sender, address indexed paymaster, uint256 nonce, bool success, uint256 actualGasCost, uint256 actualGasUsed ); /** * Account "sender" was deployed. * @param userOpHash - The userOp that deployed this account. UserOperationEvent will follow. * @param sender - The account that is deployed * @param factory - The factory used to deploy this account (in the initCode) * @param paymaster - The paymaster used by this UserOp */ event AccountDeployed( bytes32 indexed userOpHash, address indexed sender, address factory, address paymaster ); /** * An event emitted if the UserOperation "callData" reverted with non-zero length. * @param userOpHash - The request unique identifier. * @param sender - The sender of this request. * @param nonce - The nonce used in the request. * @param revertReason - The return bytes from the (reverted) call to "callData". */ event UserOperationRevertReason( bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason ); /** * An event emitted if the UserOperation Paymaster's "postOp" call reverted with non-zero length. * @param userOpHash - The request unique identifier. * @param sender - The sender of this request. * @param nonce - The nonce used in the request. * @param revertReason - The return bytes from the (reverted) call to "callData". */ event PostOpRevertReason( bytes32 indexed userOpHash, address indexed sender, uint256 nonce, bytes revertReason ); /** * UserOp consumed more than prefund. The UserOperation is reverted, and no refund is made. * @param userOpHash - The request unique identifier. * @param sender - The sender of this request. * @param nonce - The nonce used in the request. */ event UserOperationPrefundTooLow( bytes32 indexed userOpHash, address indexed sender, uint256 nonce ); /** * An event emitted by handleOps(), before starting the execution loop. * Any event emitted before this event, is part of the validation. */ event BeforeExecution(); /** * Signature aggregator used by the following UserOperationEvents within this bundle. * @param aggregator - The aggregator used for the following UserOperationEvents. */ event SignatureAggregatorChanged(address indexed aggregator); /** * A custom revert error of handleOps, to identify the offending op. * Should be caught in off-chain handleOps simulation and not happen on-chain. * Useful for mitigating DoS attempts against batchers or for troubleshooting of factory/account/paymaster reverts. * NOTE: If simulateValidation passes successfully, there should be no reason for handleOps to fail on it. * @param opIndex - Index into the array of ops to the failed one (in simulateValidation, this is always zero). * @param reason - Revert reason. The string starts with a unique code "AAmn", * where "m" is "1" for factory, "2" for account and "3" for paymaster issues, * so a failure can be attributed to the correct entity. */ error FailedOp(uint256 opIndex, string reason); /** * A custom revert error of handleOps, to report a revert by account or paymaster. * @param opIndex - Index into the array of ops to the failed one (in simulateValidation, this is always zero). * @param reason - Revert reason. see FailedOp(uint256,string), above * @param inner - data from inner cought revert reason * @dev note that inner is truncated to 2048 bytes */ error FailedOpWithRevert(uint256 opIndex, string reason, bytes inner); error PostOpReverted(bytes returnData); /** * Error case when a signature aggregator fails to verify the aggregated signature it had created. * @param aggregator The aggregator that failed to verify the signature */ error SignatureValidationFailed(address aggregator); // Return value of getSenderAddress. error SenderAddressResult(address sender); // UserOps handled, per aggregator. struct UserOpsPerAggregator { PackedUserOperation[] userOps; // Aggregator address IAggregator aggregator; // Aggregated signature bytes signature; } /** * Execute a batch of UserOperations. * No signature aggregator is used. * If any account requires an aggregator (that is, it returned an aggregator when * performing simulateValidation), then handleAggregatedOps() must be used instead. * @param ops - The operations to execute. * @param beneficiary - The address to receive the fees. */ function handleOps( PackedUserOperation[] calldata ops, address payable beneficiary ) external; /** * Execute a batch of UserOperation with Aggregators * @param opsPerAggregator - The operations to execute, grouped by aggregator (or address(0) for no-aggregator accounts). * @param beneficiary - The address to receive the fees. */ function handleAggregatedOps( UserOpsPerAggregator[] calldata opsPerAggregator, address payable beneficiary ) external; /** * Generate a request Id - unique identifier for this request. * The request ID is a hash over the content of the userOp (except the signature), the entrypoint and the chainid. * @param userOp - The user operation to generate the request ID for. * @return hash the hash of this UserOperation */ function getUserOpHash( PackedUserOperation calldata userOp ) external view returns (bytes32); /** * Gas and return values during simulation. * @param preOpGas - The gas used for validation (including preValidationGas) * @param prefund - The required prefund for this operation * @param accountValidationData - returned validationData from account. * @param paymasterValidationData - return validationData from paymaster. * @param paymasterContext - Returned by validatePaymasterUserOp (to be passed into postOp) */ struct ReturnInfo { uint256 preOpGas; uint256 prefund; uint256 accountValidationData; uint256 paymasterValidationData; bytes paymasterContext; } /** * Returned aggregated signature info: * The aggregator returned by the account, and its current stake. */ struct AggregatorStakeInfo { address aggregator; StakeInfo stakeInfo; } /** * Get counterfactual sender address. * Calculate the sender contract address that will be generated by the initCode and salt in the UserOperation. * This method always revert, and returns the address in SenderAddressResult error * @param initCode - The constructor code to be passed into the UserOperation. */ function getSenderAddress(bytes memory initCode) external; error DelegateAndRevert(bool success, bytes ret); /** * Helper method for dry-run testing. * @dev calling this method, the EntryPoint will make a delegatecall to the given data, and report (via revert) the result. * The method always revert, so is only useful off-chain for dry run calls, in cases where state-override to replace * actual EntryPoint code is less convenient. * @param target a target contract to make a delegatecall from entrypoint * @param data data to pass to target in a delegatecall */ function delegateAndRevert(address target, bytes calldata data) external; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity >=0.7.5; interface INonceManager { /** * Return the next nonce for this sender. * Within a given key, the nonce values are sequenced (starting with zero, and incremented by one on each userop) * But UserOp with different keys can come with arbitrary order. * * @param sender the account address * @param key the high 192 bit of the nonce * @return nonce a full nonce to pass for next UserOp with this sender. */ function getNonce(address sender, uint192 key) external view returns (uint256 nonce); /** * Manually increment the nonce of the sender. * This method is exposed just for completeness.. * Account does NOT need to call it, neither during validation, nor elsewhere, * as the EntryPoint will update the nonce regardless. * Possible use-case is call it with various keys to "initialize" their nonces to one, so that future * UserOperations will not pay extra for the first transaction with a given key. */ function incrementNonce(uint192 key) external; }
// SPDX-License-Identifier: GPL-3.0-only pragma solidity >=0.7.5; /** * Manage deposits and stakes. * Deposit is just a balance used to pay for UserOperations (either by a paymaster or an account). * Stake is value locked for at least "unstakeDelay" by the staked entity. */ interface IStakeManager { event Deposited(address indexed account, uint256 totalDeposit); event Withdrawn( address indexed account, address withdrawAddress, uint256 amount ); // Emitted when stake or unstake delay are modified. event StakeLocked( address indexed account, uint256 totalStaked, uint256 unstakeDelaySec ); // Emitted once a stake is scheduled for withdrawal. event StakeUnlocked(address indexed account, uint256 withdrawTime); event StakeWithdrawn( address indexed account, address withdrawAddress, uint256 amount ); /** * @param deposit - The entity's deposit. * @param staked - True if this entity is staked. * @param stake - Actual amount of ether staked for this entity. * @param unstakeDelaySec - Minimum delay to withdraw the stake. * @param withdrawTime - First block timestamp where 'withdrawStake' will be callable, or zero if already locked. * @dev Sizes were chosen so that deposit fits into one cell (used during handleOp) * and the rest fit into a 2nd cell (used during stake/unstake) * - 112 bit allows for 10^15 eth * - 48 bit for full timestamp * - 32 bit allows 150 years for unstake delay */ struct DepositInfo { uint256 deposit; bool staked; uint112 stake; uint32 unstakeDelaySec; uint48 withdrawTime; } // API struct used by getStakeInfo and simulateValidation. struct StakeInfo { uint256 stake; uint256 unstakeDelaySec; } /** * Get deposit info. * @param account - The account to query. * @return info - Full deposit information of given account. */ function getDepositInfo( address account ) external view returns (DepositInfo memory info); /** * Get account balance. * @param account - The account to query. * @return - The deposit (for gas payment) of the account. */ function balanceOf(address account) external view returns (uint256); /** * Add to the deposit of the given account. * @param account - The account to add to. */ function depositTo(address account) external payable; /** * Add to the account's stake - amount and delay * any pending unstake is first cancelled. * @param _unstakeDelaySec - The new lock duration before the deposit can be withdrawn. */ function addStake(uint32 _unstakeDelaySec) external payable; /** * Attempt to unlock the stake. * The value can be withdrawn (using withdrawStake) after the unstake delay. */ function unlockStake() external; /** * Withdraw from the (unlocked) stake. * Must first call unlockStake and wait for the unstakeDelay to pass. * @param withdrawAddress - The address to send withdrawn value. */ function withdrawStake(address payable withdrawAddress) external; /** * Withdraw from the deposit. * @param withdrawAddress - The address to send withdrawn value. * @param withdrawAmount - The amount to withdraw. */ function withdrawTo( address payable withdrawAddress, uint256 withdrawAmount ) external; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity >=0.7.5; /** * User Operation struct * @param sender - The sender account of this request. * @param nonce - Unique value the sender uses to verify it is not a replay. * @param initCode - If set, the account contract will be created by this constructor/ * @param callData - The method call to execute on this account. * @param accountGasLimits - Packed gas limits for validateUserOp and gas limit passed to the callData method call. * @param preVerificationGas - Gas not calculated by the handleOps method, but added to the gas paid. * Covers batch overhead. * @param gasFees - packed gas fields maxPriorityFeePerGas and maxFeePerGas - Same as EIP-1559 gas parameters. * @param paymasterAndData - If set, this field holds the paymaster address, verification gas limit, postOp gas limit and paymaster-specific extra data * The paymaster will pay for the transaction instead of the sender. * @param signature - Sender-verified signature over the entire request, the EntryPoint address and the chain ID. */ struct PackedUserOperation { address sender; uint256 nonce; bytes initCode; bytes callData; bytes32 accountGasLimits; uint256 preVerificationGas; bytes32 gasFees; bytes paymasterAndData; bytes signature; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; /* solhint-disable avoid-low-level-calls */ /* solhint-disable no-inline-assembly */ /* solhint-disable reason-string */ import "@openzeppelin/contracts/utils/cryptography/ECDSA.sol"; import "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol"; import "@openzeppelin/contracts/proxy/utils/Initializable.sol"; import "@openzeppelin/contracts/proxy/utils/UUPSUpgradeable.sol"; import "../core/BaseAccount.sol"; import "../core/Helpers.sol"; import "./callback/TokenCallbackHandler.sol"; /** * minimal account. * this is sample minimal account. * has execute, eth handling methods * has a single signer that can send requests through the entryPoint. */ contract SimpleAccount is BaseAccount, TokenCallbackHandler, UUPSUpgradeable, Initializable { address public owner; IEntryPoint private immutable _entryPoint; event SimpleAccountInitialized(IEntryPoint indexed entryPoint, address indexed owner); modifier onlyOwner() { _onlyOwner(); _; } /// @inheritdoc BaseAccount function entryPoint() public view virtual override returns (IEntryPoint) { return _entryPoint; } // solhint-disable-next-line no-empty-blocks receive() external payable {} constructor(IEntryPoint anEntryPoint) { _entryPoint = anEntryPoint; _disableInitializers(); } function _onlyOwner() internal view { //directly from EOA owner, or through the account itself (which gets redirected through execute()) require(msg.sender == owner || msg.sender == address(this), "only owner"); } /** * execute a transaction (called directly from owner, or by entryPoint) * @param dest destination address to call * @param value the value to pass in this call * @param func the calldata to pass in this call */ function execute(address dest, uint256 value, bytes calldata func) external { _requireFromEntryPointOrOwner(); _call(dest, value, func); } /** * execute a sequence of transactions * @dev to reduce gas consumption for trivial case (no value), use a zero-length array to mean zero value * @param dest an array of destination addresses * @param value an array of values to pass to each call. can be zero-length for no-value calls * @param func an array of calldata to pass to each call */ function executeBatch(address[] calldata dest, uint256[] calldata value, bytes[] calldata func) external { _requireFromEntryPointOrOwner(); require(dest.length == func.length && (value.length == 0 || value.length == func.length), "wrong array lengths"); if (value.length == 0) { for (uint256 i = 0; i < dest.length; i++) { _call(dest[i], 0, func[i]); } } else { for (uint256 i = 0; i < dest.length; i++) { _call(dest[i], value[i], func[i]); } } } /** * @dev The _entryPoint member is immutable, to reduce gas consumption. To upgrade EntryPoint, * a new implementation of SimpleAccount must be deployed with the new EntryPoint address, then upgrading * the implementation by calling `upgradeTo()` * @param anOwner the owner (signer) of this account */ function initialize(address anOwner) public virtual initializer { _initialize(anOwner); } function _initialize(address anOwner) internal virtual { owner = anOwner; emit SimpleAccountInitialized(_entryPoint, owner); } // Require the function call went through EntryPoint or owner function _requireFromEntryPointOrOwner() internal view { require(msg.sender == address(entryPoint()) || msg.sender == owner, "account: not Owner or EntryPoint"); } /// implement template method of BaseAccount function _validateSignature(PackedUserOperation calldata userOp, bytes32 userOpHash) internal override virtual returns (uint256 validationData) { bytes32 hash = MessageHashUtils.toEthSignedMessageHash(userOpHash); if (owner != ECDSA.recover(hash, userOp.signature)) return SIG_VALIDATION_FAILED; return SIG_VALIDATION_SUCCESS; } function _call(address target, uint256 value, bytes memory data) internal { (bool success, bytes memory result) = target.call{value: value}(data); if (!success) { assembly { revert(add(result, 32), mload(result)) } } } /** * check current account deposit in the entryPoint */ function getDeposit() public view returns (uint256) { return entryPoint().balanceOf(address(this)); } /** * deposit more funds for this account in the entryPoint */ function addDeposit() public payable { entryPoint().depositTo{value: msg.value}(address(this)); } /** * withdraw value from the account's deposit * @param withdrawAddress target to send to * @param amount to withdraw */ function withdrawDepositTo(address payable withdrawAddress, uint256 amount) public onlyOwner { entryPoint().withdrawTo(withdrawAddress, amount); } function _authorizeUpgrade(address newImplementation) internal view override { (newImplementation); _onlyOwner(); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.23; /* solhint-disable no-empty-blocks */ import "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import "@openzeppelin/contracts/token/ERC721/IERC721Receiver.sol"; import "@openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol"; /** * Token callback handler. * Handles supported tokens' callbacks, allowing account receiving these tokens. */ abstract contract TokenCallbackHandler is IERC721Receiver, IERC1155Receiver { function onERC721Received( address, address, uint256, bytes calldata ) external pure override returns (bytes4) { return IERC721Receiver.onERC721Received.selector; } function onERC1155Received( address, address, uint256, uint256, bytes calldata ) external pure override returns (bytes4) { return IERC1155Receiver.onERC1155Received.selector; } function onERC1155BatchReceived( address, address, uint256[] calldata, uint256[] calldata, bytes calldata ) external pure override returns (bytes4) { return IERC1155Receiver.onERC1155BatchReceived.selector; } function supportsInterface(bytes4 interfaceId) external view virtual override returns (bool) { return interfaceId == type(IERC721Receiver).interfaceId || interfaceId == type(IERC1155Receiver).interfaceId || interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC1822.sol) pragma solidity ^0.8.20; /** * @dev ERC1822: Universal Upgradeable Proxy Standard (UUPS) documents a method for upgradeability through a simplified * proxy whose upgrades are fully controlled by the current implementation. */ interface IERC1822Proxiable { /** * @dev Returns the storage slot that the proxiable contract assumes is being used to store the implementation * address. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. */ function proxiableUUID() external view returns (bytes32); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Proxy.sol) pragma solidity ^0.8.20; import {Proxy} from "../Proxy.sol"; import {ERC1967Utils} from "./ERC1967Utils.sol"; /** * @dev This contract implements an upgradeable proxy. It is upgradeable because calls are delegated to an * implementation address that can be changed. This address is stored in storage in the location specified by * https://eips.ethereum.org/EIPS/eip-1967[EIP1967], so that it doesn't conflict with the storage layout of the * implementation behind the proxy. */ contract ERC1967Proxy is Proxy { /** * @dev Initializes the upgradeable proxy with an initial implementation specified by `implementation`. * * If `_data` is nonempty, it's used as data in a delegate call to `implementation`. This will typically be an * encoded function call, and allows initializing the storage of the proxy like a Solidity constructor. * * Requirements: * * - If `data` is empty, `msg.value` must be zero. */ constructor(address implementation, bytes memory _data) payable { ERC1967Utils.upgradeToAndCall(implementation, _data); } /** * @dev Returns the current implementation address. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc` */ function _implementation() internal view virtual override returns (address) { return ERC1967Utils.getImplementation(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/ERC1967/ERC1967Utils.sol) pragma solidity ^0.8.20; import {IBeacon} from "../beacon/IBeacon.sol"; import {Address} from "../../utils/Address.sol"; import {StorageSlot} from "../../utils/StorageSlot.sol"; /** * @dev This abstract contract provides getters and event emitting update functions for * https://eips.ethereum.org/EIPS/eip-1967[EIP1967] slots. */ library ERC1967Utils { // We re-declare ERC-1967 events here because they can't be used directly from IERC1967. // This will be fixed in Solidity 0.8.21. At that point we should remove these events. /** * @dev Emitted when the implementation is upgraded. */ event Upgraded(address indexed implementation); /** * @dev Emitted when the admin account has changed. */ event AdminChanged(address previousAdmin, address newAdmin); /** * @dev Emitted when the beacon is changed. */ event BeaconUpgraded(address indexed beacon); /** * @dev Storage slot with the address of the current implementation. * This is the keccak-256 hash of "eip1967.proxy.implementation" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; /** * @dev The `implementation` of the proxy is invalid. */ error ERC1967InvalidImplementation(address implementation); /** * @dev The `admin` of the proxy is invalid. */ error ERC1967InvalidAdmin(address admin); /** * @dev The `beacon` of the proxy is invalid. */ error ERC1967InvalidBeacon(address beacon); /** * @dev An upgrade function sees `msg.value > 0` that may be lost. */ error ERC1967NonPayable(); /** * @dev Returns the current implementation address. */ function getImplementation() internal view returns (address) { return StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value; } /** * @dev Stores a new address in the EIP1967 implementation slot. */ function _setImplementation(address newImplementation) private { if (newImplementation.code.length == 0) { revert ERC1967InvalidImplementation(newImplementation); } StorageSlot.getAddressSlot(IMPLEMENTATION_SLOT).value = newImplementation; } /** * @dev Performs implementation upgrade with additional setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-Upgraded} event. */ function upgradeToAndCall(address newImplementation, bytes memory data) internal { _setImplementation(newImplementation); emit Upgraded(newImplementation); if (data.length > 0) { Address.functionDelegateCall(newImplementation, data); } else { _checkNonPayable(); } } /** * @dev Storage slot with the admin of the contract. * This is the keccak-256 hash of "eip1967.proxy.admin" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant ADMIN_SLOT = 0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103; /** * @dev Returns the current admin. * * TIP: To get this value clients can read directly from the storage slot shown below (specified by EIP1967) using * the https://eth.wiki/json-rpc/API#eth_getstorageat[`eth_getStorageAt`] RPC call. * `0xb53127684a568b3173ae13b9f8a6016e243e63b6e8ee1178d6a717850b5d6103` */ function getAdmin() internal view returns (address) { return StorageSlot.getAddressSlot(ADMIN_SLOT).value; } /** * @dev Stores a new address in the EIP1967 admin slot. */ function _setAdmin(address newAdmin) private { if (newAdmin == address(0)) { revert ERC1967InvalidAdmin(address(0)); } StorageSlot.getAddressSlot(ADMIN_SLOT).value = newAdmin; } /** * @dev Changes the admin of the proxy. * * Emits an {IERC1967-AdminChanged} event. */ function changeAdmin(address newAdmin) internal { emit AdminChanged(getAdmin(), newAdmin); _setAdmin(newAdmin); } /** * @dev The storage slot of the UpgradeableBeacon contract which defines the implementation for this proxy. * This is the keccak-256 hash of "eip1967.proxy.beacon" subtracted by 1. */ // solhint-disable-next-line private-vars-leading-underscore bytes32 internal constant BEACON_SLOT = 0xa3f0ad74e5423aebfd80d3ef4346578335a9a72aeaee59ff6cb3582b35133d50; /** * @dev Returns the current beacon. */ function getBeacon() internal view returns (address) { return StorageSlot.getAddressSlot(BEACON_SLOT).value; } /** * @dev Stores a new beacon in the EIP1967 beacon slot. */ function _setBeacon(address newBeacon) private { if (newBeacon.code.length == 0) { revert ERC1967InvalidBeacon(newBeacon); } StorageSlot.getAddressSlot(BEACON_SLOT).value = newBeacon; address beaconImplementation = IBeacon(newBeacon).implementation(); if (beaconImplementation.code.length == 0) { revert ERC1967InvalidImplementation(beaconImplementation); } } /** * @dev Change the beacon and trigger a setup call if data is nonempty. * This function is payable only if the setup call is performed, otherwise `msg.value` is rejected * to avoid stuck value in the contract. * * Emits an {IERC1967-BeaconUpgraded} event. * * CAUTION: Invoking this function has no effect on an instance of {BeaconProxy} since v5, since * it uses an immutable beacon without looking at the value of the ERC-1967 beacon slot for * efficiency. */ function upgradeBeaconToAndCall(address newBeacon, bytes memory data) internal { _setBeacon(newBeacon); emit BeaconUpgraded(newBeacon); if (data.length > 0) { Address.functionDelegateCall(IBeacon(newBeacon).implementation(), data); } else { _checkNonPayable(); } } /** * @dev Reverts if `msg.value` is not zero. It can be used to avoid `msg.value` stuck in the contract * if an upgrade doesn't perform an initialization call. */ function _checkNonPayable() private { if (msg.value > 0) { revert ERC1967NonPayable(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/Proxy.sol) pragma solidity ^0.8.20; /** * @dev This abstract contract provides a fallback function that delegates all calls to another contract using the EVM * instruction `delegatecall`. We refer to the second contract as the _implementation_ behind the proxy, and it has to * be specified by overriding the virtual {_implementation} function. * * Additionally, delegation to the implementation can be triggered manually through the {_fallback} function, or to a * different contract through the {_delegate} function. * * The success and return data of the delegated call will be returned back to the caller of the proxy. */ abstract contract Proxy { /** * @dev Delegates the current call to `implementation`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _delegate(address implementation) internal virtual { assembly { // Copy msg.data. We take full control of memory in this inline assembly // block because it will not return to Solidity code. We overwrite the // Solidity scratch pad at memory position 0. calldatacopy(0, 0, calldatasize()) // Call the implementation. // out and outsize are 0 because we don't know the size yet. let result := delegatecall(gas(), implementation, 0, calldatasize(), 0, 0) // Copy the returned data. returndatacopy(0, 0, returndatasize()) switch result // delegatecall returns 0 on error. case 0 { revert(0, returndatasize()) } default { return(0, returndatasize()) } } } /** * @dev This is a virtual function that should be overridden so it returns the address to which the fallback * function and {_fallback} should delegate. */ function _implementation() internal view virtual returns (address); /** * @dev Delegates the current call to the address returned by `_implementation()`. * * This function does not return to its internal call site, it will return directly to the external caller. */ function _fallback() internal virtual { _delegate(_implementation()); } /** * @dev Fallback function that delegates calls to the address returned by `_implementation()`. Will run if no other * function in the contract matches the call data. */ fallback() external payable virtual { _fallback(); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/beacon/IBeacon.sol) pragma solidity ^0.8.20; /** * @dev This is the interface that {BeaconProxy} expects of its beacon. */ interface IBeacon { /** * @dev Must return an address that can be used as a delegate call target. * * {UpgradeableBeacon} will check that this address is a contract. */ function implementation() external view returns (address); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/Initializable.sol) pragma solidity ^0.8.20; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ```solidity * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Storage of the initializable contract. * * It's implemented on a custom ERC-7201 namespace to reduce the risk of storage collisions * when using with upgradeable contracts. * * @custom:storage-location erc7201:openzeppelin.storage.Initializable */ struct InitializableStorage { /** * @dev Indicates that the contract has been initialized. */ uint64 _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool _initializing; } // keccak256(abi.encode(uint256(keccak256("openzeppelin.storage.Initializable")) - 1)) & ~bytes32(uint256(0xff)) bytes32 private constant INITIALIZABLE_STORAGE = 0xf0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00; /** * @dev The contract is already initialized. */ error InvalidInitialization(); /** * @dev The contract is not initializing. */ error NotInitializing(); /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint64 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that in the context of a constructor an `initializer` may be invoked any * number of times. This behavior in the constructor can be useful during testing and is not expected to be used in * production. * * Emits an {Initialized} event. */ modifier initializer() { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); // Cache values to avoid duplicated sloads bool isTopLevelCall = !$._initializing; uint64 initialized = $._initialized; // Allowed calls: // - initialSetup: the contract is not in the initializing state and no previous version was // initialized // - construction: the contract is initialized at version 1 (no reininitialization) and the // current contract is just being deployed bool initialSetup = initialized == 0 && isTopLevelCall; bool construction = initialized == 1 && address(this).code.length == 0; if (!initialSetup && !construction) { revert InvalidInitialization(); } $._initialized = 1; if (isTopLevelCall) { $._initializing = true; } _; if (isTopLevelCall) { $._initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: Setting the version to 2**64 - 1 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint64 version) { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing || $._initialized >= version) { revert InvalidInitialization(); } $._initialized = version; $._initializing = true; _; $._initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { _checkInitializing(); _; } /** * @dev Reverts if the contract is not in an initializing state. See {onlyInitializing}. */ function _checkInitializing() internal view virtual { if (!_isInitializing()) { revert NotInitializing(); } } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { // solhint-disable-next-line var-name-mixedcase InitializableStorage storage $ = _getInitializableStorage(); if ($._initializing) { revert InvalidInitialization(); } if ($._initialized != type(uint64).max) { $._initialized = type(uint64).max; emit Initialized(type(uint64).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint64) { return _getInitializableStorage()._initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _getInitializableStorage()._initializing; } /** * @dev Returns a pointer to the storage namespace. */ // solhint-disable-next-line var-name-mixedcase function _getInitializableStorage() private pure returns (InitializableStorage storage $) { assembly { $.slot := INITIALIZABLE_STORAGE } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (proxy/utils/UUPSUpgradeable.sol) pragma solidity ^0.8.20; import {IERC1822Proxiable} from "../../interfaces/draft-IERC1822.sol"; import {ERC1967Utils} from "../ERC1967/ERC1967Utils.sol"; /** * @dev An upgradeability mechanism designed for UUPS proxies. The functions included here can perform an upgrade of an * {ERC1967Proxy}, when this contract is set as the implementation behind such a proxy. * * A security mechanism ensures that an upgrade does not turn off upgradeability accidentally, although this risk is * reinstated if the upgrade retains upgradeability but removes the security mechanism, e.g. by replacing * `UUPSUpgradeable` with a custom implementation of upgrades. * * The {_authorizeUpgrade} function must be overridden to include access restriction to the upgrade mechanism. */ abstract contract UUPSUpgradeable is IERC1822Proxiable { /// @custom:oz-upgrades-unsafe-allow state-variable-immutable address private immutable __self = address(this); /** * @dev The version of the upgrade interface of the contract. If this getter is missing, both `upgradeTo(address)` * and `upgradeToAndCall(address,bytes)` are present, and `upgradeTo` must be used if no function should be called, * while `upgradeToAndCall` will invoke the `receive` function if the second argument is the empty byte string. * If the getter returns `"5.0.0"`, only `upgradeToAndCall(address,bytes)` is present, and the second argument must * be the empty byte string if no function should be called, making it impossible to invoke the `receive` function * during an upgrade. */ string public constant UPGRADE_INTERFACE_VERSION = "5.0.0"; /** * @dev The call is from an unauthorized context. */ error UUPSUnauthorizedCallContext(); /** * @dev The storage `slot` is unsupported as a UUID. */ error UUPSUnsupportedProxiableUUID(bytes32 slot); /** * @dev Check that the execution is being performed through a delegatecall call and that the execution context is * a proxy contract with an implementation (as defined in ERC1967) pointing to self. This should only be the case * for UUPS and transparent proxies that are using the current contract as their implementation. Execution of a * function through ERC1167 minimal proxies (clones) would not normally pass this test, but is not guaranteed to * fail. */ modifier onlyProxy() { _checkProxy(); _; } /** * @dev Check that the execution is not being performed through a delegate call. This allows a function to be * callable on the implementing contract but not through proxies. */ modifier notDelegated() { _checkNotDelegated(); _; } /** * @dev Implementation of the ERC1822 {proxiableUUID} function. This returns the storage slot used by the * implementation. It is used to validate the implementation's compatibility when performing an upgrade. * * IMPORTANT: A proxy pointing at a proxiable contract should not be considered proxiable itself, because this risks * bricking a proxy that upgrades to it, by delegating to itself until out of gas. Thus it is critical that this * function revert if invoked through a proxy. This is guaranteed by the `notDelegated` modifier. */ function proxiableUUID() external view virtual notDelegated returns (bytes32) { return ERC1967Utils.IMPLEMENTATION_SLOT; } /** * @dev Upgrade the implementation of the proxy to `newImplementation`, and subsequently execute the function call * encoded in `data`. * * Calls {_authorizeUpgrade}. * * Emits an {Upgraded} event. * * @custom:oz-upgrades-unsafe-allow-reachable delegatecall */ function upgradeToAndCall(address newImplementation, bytes memory data) public payable virtual onlyProxy { _authorizeUpgrade(newImplementation); _upgradeToAndCallUUPS(newImplementation, data); } /** * @dev Reverts if the execution is not performed via delegatecall or the execution * context is not of a proxy with an ERC1967-compliant implementation pointing to self. * See {_onlyProxy}. */ function _checkProxy() internal view virtual { if ( address(this) == __self || // Must be called through delegatecall ERC1967Utils.getImplementation() != __self // Must be called through an active proxy ) { revert UUPSUnauthorizedCallContext(); } } /** * @dev Reverts if the execution is performed via delegatecall. * See {notDelegated}. */ function _checkNotDelegated() internal view virtual { if (address(this) != __self) { // Must not be called through delegatecall revert UUPSUnauthorizedCallContext(); } } /** * @dev Function that should revert when `msg.sender` is not authorized to upgrade the contract. Called by * {upgradeToAndCall}. * * Normally, this function will use an xref:access.adoc[access control] modifier such as {Ownable-onlyOwner}. * * ```solidity * function _authorizeUpgrade(address) internal onlyOwner {} * ``` */ function _authorizeUpgrade(address newImplementation) internal virtual; /** * @dev Performs an implementation upgrade with a security check for UUPS proxies, and additional setup call. * * As a security check, {proxiableUUID} is invoked in the new implementation, and the return value * is expected to be the implementation slot in ERC1967. * * Emits an {IERC1967-Upgraded} event. */ function _upgradeToAndCallUUPS(address newImplementation, bytes memory data) private { try IERC1822Proxiable(newImplementation).proxiableUUID() returns (bytes32 slot) { if (slot != ERC1967Utils.IMPLEMENTATION_SLOT) { revert UUPSUnsupportedProxiableUUID(slot); } ERC1967Utils.upgradeToAndCall(newImplementation, data); } catch { // The implementation is not UUPS revert ERC1967Utils.ERC1967InvalidImplementation(newImplementation); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC1155/IERC1155Receiver.sol) pragma solidity ^0.8.20; import {IERC165} from "../../utils/introspection/IERC165.sol"; /** * @dev Interface that must be implemented by smart contracts in order to receive * ERC-1155 token transfers. */ interface IERC1155Receiver is IERC165 { /** * @dev Handles the receipt of a single ERC1155 token type. This function is * called at the end of a `safeTransferFrom` after the balance has been updated. * * NOTE: To accept the transfer, this must return * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` * (i.e. 0xf23a6e61, or its own function selector). * * @param operator The address which initiated the transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param id The ID of the token being transferred * @param value The amount of tokens being transferred * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4); /** * @dev Handles the receipt of a multiple ERC1155 token types. This function * is called at the end of a `safeBatchTransferFrom` after the balances have * been updated. * * NOTE: To accept the transfer(s), this must return * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` * (i.e. 0xbc197c81, or its own function selector). * * @param operator The address which initiated the batch transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param ids An array containing ids of each token being transferred (order and length must match values array) * @param values An array containing amounts of each token being transferred (order and length must match ids array) * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.20; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be * reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Create2.sol) pragma solidity ^0.8.20; /** * @dev Helper to make usage of the `CREATE2` EVM opcode easier and safer. * `CREATE2` can be used to compute in advance the address where a smart * contract will be deployed, which allows for interesting new mechanisms known * as 'counterfactual interactions'. * * See the https://eips.ethereum.org/EIPS/eip-1014#motivation[EIP] for more * information. */ library Create2 { /** * @dev Not enough balance for performing a CREATE2 deploy. */ error Create2InsufficientBalance(uint256 balance, uint256 needed); /** * @dev There's no code to deploy. */ error Create2EmptyBytecode(); /** * @dev The deployment failed. */ error Create2FailedDeployment(); /** * @dev Deploys a contract using `CREATE2`. The address where the contract * will be deployed can be known in advance via {computeAddress}. * * The bytecode for a contract can be obtained from Solidity with * `type(contractName).creationCode`. * * Requirements: * * - `bytecode` must not be empty. * - `salt` must have not been used for `bytecode` already. * - the factory must have a balance of at least `amount`. * - if `amount` is non-zero, `bytecode` must have a `payable` constructor. */ function deploy(uint256 amount, bytes32 salt, bytes memory bytecode) internal returns (address addr) { if (address(this).balance < amount) { revert Create2InsufficientBalance(address(this).balance, amount); } if (bytecode.length == 0) { revert Create2EmptyBytecode(); } /// @solidity memory-safe-assembly assembly { addr := create2(amount, add(bytecode, 0x20), mload(bytecode), salt) } if (addr == address(0)) { revert Create2FailedDeployment(); } } /** * @dev Returns the address where a contract will be stored if deployed via {deploy}. Any change in the * `bytecodeHash` or `salt` will result in a new destination address. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash) internal view returns (address) { return computeAddress(salt, bytecodeHash, address(this)); } /** * @dev Returns the address where a contract will be stored if deployed via {deploy} from a contract located at * `deployer`. If `deployer` is this contract's address, returns the same value as {computeAddress}. */ function computeAddress(bytes32 salt, bytes32 bytecodeHash, address deployer) internal pure returns (address addr) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) // Get free memory pointer // | | ↓ ptr ... ↓ ptr + 0x0B (start) ... ↓ ptr + 0x20 ... ↓ ptr + 0x40 ... | // |-------------------|---------------------------------------------------------------------------| // | bytecodeHash | CCCCCCCCCCCCC...CC | // | salt | BBBBBBBBBBBBB...BB | // | deployer | 000000...0000AAAAAAAAAAAAAAAAAAA...AA | // | 0xFF | FF | // |-------------------|---------------------------------------------------------------------------| // | memory | 000000...00FFAAAAAAAAAAAAAAAAAAA...AABBBBBBBBBBBBB...BBCCCCCCCCCCCCC...CC | // | keccak(start, 85) | ↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑ | mstore(add(ptr, 0x40), bytecodeHash) mstore(add(ptr, 0x20), salt) mstore(ptr, deployer) // Right-aligned with 12 preceding garbage bytes let start := add(ptr, 0x0b) // The hashed data starts at the final garbage byte which we will set to 0xff mstore8(start, 0xff) addr := keccak256(start, 85) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/StorageSlot.sol) // This file was procedurally generated from scripts/generate/templates/StorageSlot.js. pragma solidity ^0.8.20; /** * @dev Library for reading and writing primitive types to specific storage slots. * * Storage slots are often used to avoid storage conflict when dealing with upgradeable contracts. * This library helps with reading and writing to such slots without the need for inline assembly. * * The functions in this library return Slot structs that contain a `value` member that can be used to read or write. * * Example usage to set ERC1967 implementation slot: * ```solidity * contract ERC1967 { * bytes32 internal constant _IMPLEMENTATION_SLOT = 0x360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc; * * function _getImplementation() internal view returns (address) { * return StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value; * } * * function _setImplementation(address newImplementation) internal { * require(newImplementation.code.length > 0); * StorageSlot.getAddressSlot(_IMPLEMENTATION_SLOT).value = newImplementation; * } * } * ``` */ library StorageSlot { struct AddressSlot { address value; } struct BooleanSlot { bool value; } struct Bytes32Slot { bytes32 value; } struct Uint256Slot { uint256 value; } struct StringSlot { string value; } struct BytesSlot { bytes value; } /** * @dev Returns an `AddressSlot` with member `value` located at `slot`. */ function getAddressSlot(bytes32 slot) internal pure returns (AddressSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BooleanSlot` with member `value` located at `slot`. */ function getBooleanSlot(bytes32 slot) internal pure returns (BooleanSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Bytes32Slot` with member `value` located at `slot`. */ function getBytes32Slot(bytes32 slot) internal pure returns (Bytes32Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `Uint256Slot` with member `value` located at `slot`. */ function getUint256Slot(bytes32 slot) internal pure returns (Uint256Slot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` with member `value` located at `slot`. */ function getStringSlot(bytes32 slot) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `StringSlot` representation of the string storage pointer `store`. */ function getStringSlot(string storage store) internal pure returns (StringSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } /** * @dev Returns an `BytesSlot` with member `value` located at `slot`. */ function getBytesSlot(bytes32 slot) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := slot } } /** * @dev Returns an `BytesSlot` representation of the bytes storage pointer `store`. */ function getBytesSlot(bytes storage store) internal pure returns (BytesSlot storage r) { /// @solidity memory-safe-assembly assembly { r.slot := store.slot } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/ECDSA.sol) pragma solidity ^0.8.20; /** * @dev Elliptic Curve Digital Signature Algorithm (ECDSA) operations. * * These functions can be used to verify that a message was signed by the holder * of the private keys of a given address. */ library ECDSA { enum RecoverError { NoError, InvalidSignature, InvalidSignatureLength, InvalidSignatureS } /** * @dev The signature derives the `address(0)`. */ error ECDSAInvalidSignature(); /** * @dev The signature has an invalid length. */ error ECDSAInvalidSignatureLength(uint256 length); /** * @dev The signature has an S value that is in the upper half order. */ error ECDSAInvalidSignatureS(bytes32 s); /** * @dev Returns the address that signed a hashed message (`hash`) with `signature` or an error. This will not * return address(0) without also returning an error description. Errors are documented using an enum (error type) * and a bytes32 providing additional information about the error. * * If no error is returned, then the address can be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. * * Documentation for signature generation: * - with https://web3js.readthedocs.io/en/v1.3.4/web3-eth-accounts.html#sign[Web3.js] * - with https://docs.ethers.io/v5/api/signer/#Signer-signMessage[ethers] */ function tryRecover(bytes32 hash, bytes memory signature) internal pure returns (address, RecoverError, bytes32) { if (signature.length == 65) { bytes32 r; bytes32 s; uint8 v; // ecrecover takes the signature parameters, and the only way to get them // currently is to use assembly. /// @solidity memory-safe-assembly assembly { r := mload(add(signature, 0x20)) s := mload(add(signature, 0x40)) v := byte(0, mload(add(signature, 0x60))) } return tryRecover(hash, v, r, s); } else { return (address(0), RecoverError.InvalidSignatureLength, bytes32(signature.length)); } } /** * @dev Returns the address that signed a hashed message (`hash`) with * `signature`. This address can then be used for verification purposes. * * The `ecrecover` EVM precompile allows for malleable (non-unique) signatures: * this function rejects them by requiring the `s` value to be in the lower * half order, and the `v` value to be either 27 or 28. * * IMPORTANT: `hash` _must_ be the result of a hash operation for the * verification to be secure: it is possible to craft signatures that * recover to arbitrary addresses for non-hashed data. A safe way to ensure * this is by receiving a hash of the original message (which may otherwise * be too long), and then calling {MessageHashUtils-toEthSignedMessageHash} on it. */ function recover(bytes32 hash, bytes memory signature) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, signature); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `r` and `vs` short-signature fields separately. * * See https://eips.ethereum.org/EIPS/eip-2098[EIP-2098 short signatures] */ function tryRecover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address, RecoverError, bytes32) { unchecked { bytes32 s = vs & bytes32(0x7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff); // We do not check for an overflow here since the shift operation results in 0 or 1. uint8 v = uint8((uint256(vs) >> 255) + 27); return tryRecover(hash, v, r, s); } } /** * @dev Overload of {ECDSA-recover} that receives the `r and `vs` short-signature fields separately. */ function recover(bytes32 hash, bytes32 r, bytes32 vs) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, r, vs); _throwError(error, errorArg); return recovered; } /** * @dev Overload of {ECDSA-tryRecover} that receives the `v`, * `r` and `s` signature fields separately. */ function tryRecover( bytes32 hash, uint8 v, bytes32 r, bytes32 s ) internal pure returns (address, RecoverError, bytes32) { // EIP-2 still allows signature malleability for ecrecover(). Remove this possibility and make the signature // unique. Appendix F in the Ethereum Yellow paper (https://ethereum.github.io/yellowpaper/paper.pdf), defines // the valid range for s in (301): 0 < s < secp256k1n ÷ 2 + 1, and for v in (302): v ∈ {27, 28}. Most // signatures from current libraries generate a unique signature with an s-value in the lower half order. // // If your library generates malleable signatures, such as s-values in the upper range, calculate a new s-value // with 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 - s1 and flip v from 27 to 28 or // vice versa. If your library also generates signatures with 0/1 for v instead 27/28, add 27 to v to accept // these malleable signatures as well. if (uint256(s) > 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF5D576E7357A4501DDFE92F46681B20A0) { return (address(0), RecoverError.InvalidSignatureS, s); } // If the signature is valid (and not malleable), return the signer address address signer = ecrecover(hash, v, r, s); if (signer == address(0)) { return (address(0), RecoverError.InvalidSignature, bytes32(0)); } return (signer, RecoverError.NoError, bytes32(0)); } /** * @dev Overload of {ECDSA-recover} that receives the `v`, * `r` and `s` signature fields separately. */ function recover(bytes32 hash, uint8 v, bytes32 r, bytes32 s) internal pure returns (address) { (address recovered, RecoverError error, bytes32 errorArg) = tryRecover(hash, v, r, s); _throwError(error, errorArg); return recovered; } /** * @dev Optionally reverts with the corresponding custom error according to the `error` argument provided. */ function _throwError(RecoverError error, bytes32 errorArg) private pure { if (error == RecoverError.NoError) { return; // no error: do nothing } else if (error == RecoverError.InvalidSignature) { revert ECDSAInvalidSignature(); } else if (error == RecoverError.InvalidSignatureLength) { revert ECDSAInvalidSignatureLength(uint256(errorArg)); } else if (error == RecoverError.InvalidSignatureS) { revert ECDSAInvalidSignatureS(errorArg); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/cryptography/MessageHashUtils.sol) pragma solidity ^0.8.20; import {Strings} from "../Strings.sol"; /** * @dev Signature message hash utilities for producing digests to be consumed by {ECDSA} recovery or signing. * * The library provides methods for generating a hash of a message that conforms to the * https://eips.ethereum.org/EIPS/eip-191[EIP 191] and https://eips.ethereum.org/EIPS/eip-712[EIP 712] * specifications. */ library MessageHashUtils { /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing a bytes32 `messageHash` with * `"\x19Ethereum Signed Message:\n32"` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * NOTE: The `messageHash` parameter is intended to be the result of hashing a raw message with * keccak256, although any bytes32 value can be safely used because the final digest will * be re-hashed. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes32 messageHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { mstore(0x00, "\x19Ethereum Signed Message:\n32") // 32 is the bytes-length of messageHash mstore(0x1c, messageHash) // 0x1c (28) is the length of the prefix digest := keccak256(0x00, 0x3c) // 0x3c is the length of the prefix (0x1c) + messageHash (0x20) } } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x45` (`personal_sign` messages). * * The digest is calculated by prefixing an arbitrary `message` with * `"\x19Ethereum Signed Message:\n" + len(message)` and hashing the result. It corresponds with the * hash signed when using the https://eth.wiki/json-rpc/API#eth_sign[`eth_sign`] JSON-RPC method. * * See {ECDSA-recover}. */ function toEthSignedMessageHash(bytes memory message) internal pure returns (bytes32) { return keccak256(bytes.concat("\x19Ethereum Signed Message:\n", bytes(Strings.toString(message.length)), message)); } /** * @dev Returns the keccak256 digest of an EIP-191 signed data with version * `0x00` (data with intended validator). * * The digest is calculated by prefixing an arbitrary `data` with `"\x19\x00"` and the intended * `validator` address. Then hashing the result. * * See {ECDSA-recover}. */ function toDataWithIntendedValidatorHash(address validator, bytes memory data) internal pure returns (bytes32) { return keccak256(abi.encodePacked(hex"19_00", validator, data)); } /** * @dev Returns the keccak256 digest of an EIP-712 typed data (EIP-191 version `0x01`). * * The digest is calculated from a `domainSeparator` and a `structHash`, by prefixing them with * `\x19\x01` and hashing the result. It corresponds to the hash signed by the * https://eips.ethereum.org/EIPS/eip-712[`eth_signTypedData`] JSON-RPC method as part of EIP-712. * * See {ECDSA-recover}. */ function toTypedDataHash(bytes32 domainSeparator, bytes32 structHash) internal pure returns (bytes32 digest) { /// @solidity memory-safe-assembly assembly { let ptr := mload(0x40) mstore(ptr, hex"19_01") mstore(add(ptr, 0x02), domainSeparator) mstore(add(ptr, 0x22), structHash) digest := keccak256(ptr, 0x42) } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
{ "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 1000000 }, "evmVersion": "paris", "viaIR": true, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
[{"inputs":[{"internalType":"contract IEntryPoint","name":"_entryPoint","type":"address"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"accountImplementation","outputs":[{"internalType":"contract SimpleAccount","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"salt","type":"uint256"}],"name":"createAccount","outputs":[{"internalType":"contract SimpleAccount","name":"ret","type":"address"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"uint256","name":"salt","type":"uint256"}],"name":"getAddress","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"}]
Contract Creation Code
60a0346100cb576001600160401b0390601f61245638819003918201601f1916830191848311848410176100b5578084926020946040528339810103126100cb57516001600160a01b038116908190036100cb5760405191611bde90818401908111848210176100b5576020928492610878843981520301906000f080156100a9576080526040516107a790816100d1823960805181818160e00152818161030601526103f70152f35b6040513d6000823e3d90fd5b634e487b7160e01b600052604160045260246000fd5b600080fdfe608080604052600436101561001357600080fd5b600090813560e01c90816311464fbe14610096575080635fbfb9cf1461007c57638cb84e181461004257600080fd5b3461007957602061005b61005536610108565b90610363565b73ffffffffffffffffffffffffffffffffffffffff60405191168152f35b80fd5b503461007957602061005b61009036610108565b90610274565b90503461010457817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101045760209073ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b5080fd5b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60409101126101595760043573ffffffffffffffffffffffffffffffffffffffff81168103610159579060243590565b600080fd5b6060810190811067ffffffffffffffff82111761017a57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761017a57604052565b60005b8381106101fd5750506000910152565b81810151838201526020016101ed565b90601f60609373ffffffffffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0931684526040602085015261026d81518092816040880152602088880191016101ea565b0116010190565b9061027f8183610363565b803b610347575073ffffffffffffffffffffffffffffffffffffffff9182604051917fc4d66de8000000000000000000000000000000000000000000000000000000006020840152166024820152602481526102da8161015e565b604051906102de8083019183831067ffffffffffffffff84111761017a57839261032c926104948539867f0000000000000000000000000000000000000000000000000000000000000000169061020d565b03906000f5801561033b571690565b6040513d6000823e3d90fd5b73ffffffffffffffffffffffffffffffffffffffff1692915050565b600b906055926102de60209061046f61047b83604096875190610388838701836101a9565b85825282820195610494873961041d61044973ffffffffffffffffffffffffffffffffffffffff92838c51917fc4d66de80000000000000000000000000000000000000000000000000000000088840152166024820152602481526103ec8161015e565b8b51928391878301957f0000000000000000000000000000000000000000000000000000000000000000168661020d565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081018352826101a9565b8951958693610460868601998a92519283916101ea565b840191518093868401906101ea565b010380845201826101a9565b5190208351938401528201523081520160ff8153209056fe60806040526102de8038038061001481610194565b92833981019060408183031261018f5780516001600160a01b03811680820361018f5760208381015190936001600160401b03821161018f570184601f8201121561018f5780519061006d610068836101cf565b610194565b9582875285838301011161018f57849060005b83811061017b57505060009186010152813b15610163577f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc80546001600160a01b03191682179055604051907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b600080a28351156101455750600080848461012c96519101845af4903d1561013c573d61011c610068826101cf565b908152600081943d92013e6101ea565b505b6040516090908161024e8239f35b606092506101ea565b9250505034610154575061012e565b63b398979f60e01b8152600490fd5b60249060405190634c9c8ce360e01b82526004820152fd5b818101830151888201840152869201610080565b600080fd5b6040519190601f01601f191682016001600160401b038111838210176101b957604052565b634e487b7160e01b600052604160045260246000fd5b6001600160401b0381116101b957601f01601f191660200190565b9061021157508051156101ff57805190602001fd5b604051630a12f52160e11b8152600490fd5b81511580610244575b610222575090565b604051639996b31560e01b81526001600160a01b039091166004820152602490fd5b50803b1561021a56fe608060405273ffffffffffffffffffffffffffffffffffffffff7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc54166000808092368280378136915af43d82803e156056573d90f35b3d90fdfea2646970667358221220f5e8b644859296a96709b55dc361a99ce7d8e820f28337623c36da13ee1116b264736f6c63430008170033a26469706673582212200b48fe18b596ebd25a1135f790622a5a821a1db101fc505f0b3e992feb088d0f64736f6c6343000817003360c034610142576001600160401b0390601f611bde38819003918201601f1916830191848311848410176101475780849260209460405283398101031261014257516001600160a01b0381168103610142573060805260a0527ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a009081549060ff8260401c166101305780808316036100eb575b604051611a80908161015e82396080518181816108ff0152610afd015260a05181818161036701528181610611015281816106f001528181610ce501528181610ebc015281816111a40152818161149c015261164e0152f35b6001600160401b031990911681179091556040519081527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602090a1388080610092565b60405163f92ee8a960e01b8152600490fd5b600080fd5b634e487b7160e01b600052604160045260246000fdfe6080604052600436101561001b575b361561001957600080fd5b005b60003560e01c806301ffc9a71461012b578063150b7a021461012657806319822f7c1461012157806347e1da2a1461011c5780634a58db19146101175780634d44560d146101125780634f1ef2861461010d57806352d1902d146101085780638da5cb5b14610103578063ad3cb1cc146100fe578063b0d691fe146100f9578063b61d27f6146100f4578063bc197c81146100ef578063c399ec88146100ea578063c4d66de8146100e5578063d087d288146100e05763f23a6e610361000e57611207565b611125565b610f15565b610e44565b610d7d565b610d09565b610c9a565b610bc9565b610b77565b610ab7565b61087f565b610692565b6105cf565b610484565b6102fd565b61026c565b3461021b5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b576004357fffffffff00000000000000000000000000000000000000000000000000000000811680910361021b57807f150b7a0200000000000000000000000000000000000000000000000000000000602092149081156101f1575b81156101c7575b506040519015158152f35b7f01ffc9a700000000000000000000000000000000000000000000000000000000915014386101bc565b7f4e2312e000000000000000000000000000000000000000000000000000000000811491506101b5565b600080fd5b73ffffffffffffffffffffffffffffffffffffffff81160361021b57565b9181601f8401121561021b5782359167ffffffffffffffff831161021b576020838186019501011161021b57565b3461021b5760807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b576102a6600435610220565b6102b1602435610220565b60643567ffffffffffffffff811161021b576102d190369060040161023e565b505060206040517f150b7a02000000000000000000000000000000000000000000000000000000008152f35b3461021b577ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60608136011261021b576004359067ffffffffffffffff821161021b5761012090823603011261021b5760443573ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001633036103f5576103a06103b892602435906004016113d5565b90806103bc575b506040519081529081906020820190565b0390f35b600080808093337ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff1506103ee611454565b50386103a7565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601c60248201527f6163636f756e743a206e6f742066726f6d20456e747279506f696e74000000006044820152fd5b9181601f8401121561021b5782359167ffffffffffffffff831161021b576020808501948460051b01011161021b57565b3461021b5760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b5767ffffffffffffffff60043581811161021b576104d4903690600401610453565b60249291923582811161021b576104ef903690600401610453565b9260443590811161021b57610508903690600401610453565b939091610513611484565b848414806105be575b61052590611298565b8161057257505060005b82811061053857005b8061056c61055161054c600194878a61132c565b611341565b61056661055f84898861139f565b3691610848565b9061153a565b0161052f565b91909460009493945b85811061058457005b806105b861059861054c6001948a8761132c565b6105a3838b8961132c565b356105b261055f858b8a61139f565b91611562565b0161057b565b5081158061051c575081851461051c565b6000807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261068f5773ffffffffffffffffffffffffffffffffffffffff7f00000000000000000000000000000000000000000000000000000000000000001681813b1561068f57602491604051928380927fb760faf900000000000000000000000000000000000000000000000000000000825230600483015234905af1801561068a5761067e575080f35b61068790610798565b80f35b6113ba565b80fd5b3461021b57600060407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261068f576004356106cf81610220565b6106d7611579565b8173ffffffffffffffffffffffffffffffffffffffff807f00000000000000000000000000000000000000000000000000000000000000001692833b15610765576044908360405195869485937f205c287800000000000000000000000000000000000000000000000000000000855216600484015260243560248401525af1801561068a5761067e575080f35b8280fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b67ffffffffffffffff81116107ac57604052565b610769565b6040810190811067ffffffffffffffff8211176107ac57604052565b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff8211176107ac57604052565b67ffffffffffffffff81116107ac57601f017fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe01660200190565b9291926108548261080e565b9161086260405193846107cd565b82948184528183011161021b578281602093846000960137010152565b60407ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b5760048035906108b782610220565b60243567ffffffffffffffff811161021b573660238201121561021b576108e79036906024818501359101610848565b73ffffffffffffffffffffffffffffffffffffffff807f000000000000000000000000000000000000000000000000000000000000000016803014908115610a89575b50610a6057906020839261093c611579565b604051938480927f52d1902d00000000000000000000000000000000000000000000000000000000825288165afa60009281610a2f575b506109c75750506040517f4c9c8ce300000000000000000000000000000000000000000000000000000000815273ffffffffffffffffffffffffffffffffffffffff90921690820190815281906020010390fd5b83837f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc84036109fa576100198383611695565b6040517faa1d49a400000000000000000000000000000000000000000000000000000000815290810184815281906020010390fd5b610a5291935060203d602011610a59575b610a4a81836107cd565b8101906113c6565b9138610973565b503d610a40565b826040517fe07c8dba000000000000000000000000000000000000000000000000000000008152fd5b9050817f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc541614153861092a565b3461021b5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b5773ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000163003610b4d5760206040517f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc8152f35b60046040517fe07c8dba000000000000000000000000000000000000000000000000000000008152fd5b3461021b5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b57602073ffffffffffffffffffffffffffffffffffffffff60005416604051908152f35b3461021b5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b576040805190610c06826107b1565b600582526020907f352e302e300000000000000000000000000000000000000000000000000000006020840152604051916020835283519182602085015260005b838110610c8757846040817fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f88600085828601015201168101030190f35b8581018301518582018301528201610c47565b3461021b5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b57602060405173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000168152f35b3461021b5760607ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b57600435610d4481610220565b6044359067ffffffffffffffff821161021b57610d73610d6b61001993369060040161023e565b61055f611484565b9060243590611562565b3461021b5760a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b57610db7600435610220565b610dc2602435610220565b67ffffffffffffffff60443581811161021b57610de3903690600401610453565b505060643581811161021b57610dfd903690600401610453565b505060843590811161021b57610e1790369060040161023e565b50506040517fbc197c81000000000000000000000000000000000000000000000000000000008152602090f35b3461021b5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b576040517f70a0823100000000000000000000000000000000000000000000000000000000815230600482015260208160248173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa801561068a57602091600091610ef8575b50604051908152f35b610f0f9150823d8411610a5957610a4a81836107cd565b38610eef565b3461021b5760207ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b57600435610f5081610220565b7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00549067ffffffffffffffff60ff8360401c161592168015908161111d575b6001149081611113575b15908161110a575b506110e0576110039082610ffa7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a0060017fffffffffffffffffffffffffffffffffffffffffffffffff0000000000000000825416179055565b61108457611609565b61100957005b6110557ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a007fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff8154169055565b604051600181527fc7f505b2f371ae2175ee4913f4499e1f2633a7b5936321eed1cdaeb6115181d290602090a1005b6110db7ff0c57e16840df040f15088dc2f81fe391c3923bec73e23a9662efc9c229c6a00680100000000000000007fffffffffffffffffffffffffffffffffffffffffffffff00ffffffffffffffff825416179055565b611609565b60046040517ff92ee8a9000000000000000000000000000000000000000000000000000000008152fd5b90501538610fa1565b303b159150610f99565b839150610f8f565b3461021b5760007ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b576040517f35567e1a0000000000000000000000000000000000000000000000000000000081523060048201526000602482015260208160448173ffffffffffffffffffffffffffffffffffffffff7f0000000000000000000000000000000000000000000000000000000000000000165afa801561068a576103b8916000916111e857506040519081529081906020820190565b611201915060203d602011610a5957610a4a81836107cd565b386103a7565b3461021b5760a07ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261021b57611241600435610220565b61124c602435610220565b60843567ffffffffffffffff811161021b5761126c90369060040161023e565b505060206040517ff23a6e61000000000000000000000000000000000000000000000000000000008152f35b1561129f57565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152601360248201527f77726f6e67206172726179206c656e67746873000000000000000000000000006044820152fd5b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b919081101561133c5760051b0190565b6112fd565b3561134b81610220565b90565b9035907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe18136030182121561021b570180359067ffffffffffffffff821161021b5760200191813603831361021b57565b9082101561133c576113b69160051b81019061134e565b9091565b6040513d6000823e3d90fd5b9081602091031261021b575190565b907f19457468657265756d205369676e6564204d6573736167653a0a333200000000600052601c52603c60002061144461143b73ffffffffffffffffffffffffffffffffffffffff9261143561055f85600054169661010081019061134e565b906117af565b90929192611824565b160361144f57600090565b600190565b3d1561147f573d906114658261080e565b9161147360405193846107cd565b82523d6000602084013e565b606090565b73ffffffffffffffffffffffffffffffffffffffff807f000000000000000000000000000000000000000000000000000000000000000016331490811561152c575b50156114ce57565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152602060248201527f6163636f756e743a206e6f74204f776e6572206f7220456e747279506f696e746044820152fd5b9050600054163314386114c6565b600091829182602083519301915af1611551611454565b901561155a5750565b602081519101fd5b916000928392602083519301915af1611551611454565b73ffffffffffffffffffffffffffffffffffffffff6000541633148015611600575b156115a257565b60646040517f08c379a000000000000000000000000000000000000000000000000000000000815260206004820152600a60248201527f6f6e6c79206f776e6572000000000000000000000000000000000000000000006044820152fd5b5030331461159b565b73ffffffffffffffffffffffffffffffffffffffff80911690817fffffffffffffffffffffffff000000000000000000000000000000000000000060005416176000557f0000000000000000000000000000000000000000000000000000000000000000167f47e55c76e7a6f1fd8996a1da8008c1ea29699cca35e7bcd057f2dec313b6e5de600080a3565b90813b156117685773ffffffffffffffffffffffffffffffffffffffff82167f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc817fffffffffffffffffffffffff00000000000000000000000000000000000000008254161790557fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b600080a280511561173557611732916118fb565b50565b50503461173e57565b60046040517fb398979f000000000000000000000000000000000000000000000000000000008152fd5b60248273ffffffffffffffffffffffffffffffffffffffff604051917f4c9c8ce3000000000000000000000000000000000000000000000000000000008352166004820152fd5b81519190604183036117e0576117d992506020820151906060604084015193015160001a90611919565b9192909190565b505060009160029190565b600411156117f557565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602160045260246000fd5b61182d816117eb565b80611836575050565b61183f816117eb565b600181036118715760046040517ff645eedf000000000000000000000000000000000000000000000000000000008152fd5b61187a816117eb565b600281036118b4576040517ffce698f700000000000000000000000000000000000000000000000000000000815260048101839052602490fd5b806118c06003926117eb565b146118c85750565b6040517fd78bce0c0000000000000000000000000000000000000000000000000000000081526004810191909152602490fd5b60008061134b93602081519101845af4611913611454565b916119aa565b91907f7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0841161199e57926020929160ff608095604051948552168484015260408301526060820152600092839182805260015afa1561068a57805173ffffffffffffffffffffffffffffffffffffffff81161561199557918190565b50809160019190565b50505060009160039190565b906119e957508051156119bf57805190602001fd5b60046040517f1425ea42000000000000000000000000000000000000000000000000000000008152fd5b81511580611a41575b6119fa575090565b60249073ffffffffffffffffffffffffffffffffffffffff604051917f9996b315000000000000000000000000000000000000000000000000000000008352166004820152fd5b50803b156119f256fea26469706673582212208d3658e07941ecc674ef6796a040cedb55173d541d90f153a5e9bc934c5a1f4264736f6c634300081700330000000000000000000000000000000071727de22e5e9d8baf0edac6f37da032
Deployed Bytecode
0x608080604052600436101561001357600080fd5b600090813560e01c90816311464fbe14610096575080635fbfb9cf1461007c57638cb84e181461004257600080fd5b3461007957602061005b61005536610108565b90610363565b73ffffffffffffffffffffffffffffffffffffffff60405191168152f35b80fd5b503461007957602061005b61009036610108565b90610274565b90503461010457817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101045760209073ffffffffffffffffffffffffffffffffffffffff7f000000000000000000000000567fca956ffb8808ca4f53867ddc30881ee50d4e168152f35b5080fd5b7ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc60409101126101595760043573ffffffffffffffffffffffffffffffffffffffff81168103610159579060243590565b600080fd5b6060810190811067ffffffffffffffff82111761017a57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761017a57604052565b60005b8381106101fd5750506000910152565b81810151838201526020016101ed565b90601f60609373ffffffffffffffffffffffffffffffffffffffff7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0931684526040602085015261026d81518092816040880152602088880191016101ea565b0116010190565b9061027f8183610363565b803b610347575073ffffffffffffffffffffffffffffffffffffffff9182604051917fc4d66de8000000000000000000000000000000000000000000000000000000006020840152166024820152602481526102da8161015e565b604051906102de8083019183831067ffffffffffffffff84111761017a57839261032c926104948539867f000000000000000000000000567fca956ffb8808ca4f53867ddc30881ee50d4e169061020d565b03906000f5801561033b571690565b6040513d6000823e3d90fd5b73ffffffffffffffffffffffffffffffffffffffff1692915050565b600b906055926102de60209061046f61047b83604096875190610388838701836101a9565b85825282820195610494873961041d61044973ffffffffffffffffffffffffffffffffffffffff92838c51917fc4d66de80000000000000000000000000000000000000000000000000000000088840152166024820152602481526103ec8161015e565b8b51928391878301957f000000000000000000000000567fca956ffb8808ca4f53867ddc30881ee50d4e168661020d565b037fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe081018352826101a9565b8951958693610460868601998a92519283916101ea565b840191518093868401906101ea565b010380845201826101a9565b5190208351938401528201523081520160ff8153209056fe60806040526102de8038038061001481610194565b92833981019060408183031261018f5780516001600160a01b03811680820361018f5760208381015190936001600160401b03821161018f570184601f8201121561018f5780519061006d610068836101cf565b610194565b9582875285838301011161018f57849060005b83811061017b57505060009186010152813b15610163577f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc80546001600160a01b03191682179055604051907fbc7cd75a20ee27fd9adebab32041f755214dbc6bffa90cc0225b39da2e5c2d3b600080a28351156101455750600080848461012c96519101845af4903d1561013c573d61011c610068826101cf565b908152600081943d92013e6101ea565b505b6040516090908161024e8239f35b606092506101ea565b9250505034610154575061012e565b63b398979f60e01b8152600490fd5b60249060405190634c9c8ce360e01b82526004820152fd5b818101830151888201840152869201610080565b600080fd5b6040519190601f01601f191682016001600160401b038111838210176101b957604052565b634e487b7160e01b600052604160045260246000fd5b6001600160401b0381116101b957601f01601f191660200190565b9061021157508051156101ff57805190602001fd5b604051630a12f52160e11b8152600490fd5b81511580610244575b610222575090565b604051639996b31560e01b81526001600160a01b039091166004820152602490fd5b50803b1561021a56fe608060405273ffffffffffffffffffffffffffffffffffffffff7f360894a13ba1a3210667c828492db98dca3e2076cc3735a920a3ca505d382bbc54166000808092368280378136915af43d82803e156056573d90f35b3d90fdfea2646970667358221220f5e8b644859296a96709b55dc361a99ce7d8e820f28337623c36da13ee1116b264736f6c63430008170033a26469706673582212200b48fe18b596ebd25a1135f790622a5a821a1db101fc505f0b3e992feb088d0f64736f6c63430008170033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
0000000000000000000000000000000071727de22e5e9d8baf0edac6f37da032
-----Decoded View---------------
Arg [0] : _entryPoint (address): 0x0000000071727De22E5E9d8BAf0edAc6f37da032
-----Encoded View---------------
1 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000071727de22e5e9d8baf0edac6f37da032
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.