Ape Curtis Testnet

Contract

0xC4D42247cB5c7d55d5524A737E67dE45706dE796

Overview

APE Balance

Ape Curtis LogoApe Curtis LogoApe Curtis Logo0 APE

Multichain Info

No addresses found
Transaction Hash
Method
Block
From
To

There are no matching entries

Please try again later

Latest 2 internal transactions

Parent Transaction Hash Block From To
137468902024-12-10 16:59:454 days ago1733849985
0xC4D42247...5706dE796
0 APE
137464872024-12-10 16:56:214 days ago1733849781  Contract Creation0 APE

Loading...
Loading

Contract Source Code Verified (Exact Match)

Contract Name:
ContractURIFacet

Compiler Version
v0.8.23+commit.f704f362

Optimization Enabled:
Yes with 1000000 runs

Other Settings:
paris EvmVersion

Contract Source Code (Solidity Standard Json-Input format)

File 1 of 9 : ContractURIFacet.sol
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import {IContractURI} from "./IContractURI.sol";
import {ContractURILib} from "./ContractURILib.sol";
import {AccessControlRecursiveLib} from "../access/AccessControlRecursiveLib.sol";

contract ContractURIFacet is IContractURI {
    /**
     * @dev Returns collection-wide URI-accessible metadata
     */
    function contractURI() external view returns (string memory) {
        return ContractURILib._contractURI();
    }

    /**
     * @dev Set contract uri
     */
    function setContractURI(string memory uri) external {
        ContractURILib._setContractURI(uri);
    }
}

File 2 of 9 : Strings.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol)

pragma solidity ^0.8.20;

import {Math} from "./math/Math.sol";
import {SignedMath} from "./math/SignedMath.sol";

/**
 * @dev String operations.
 */
library Strings {
    bytes16 private constant HEX_DIGITS = "0123456789abcdef";
    uint8 private constant ADDRESS_LENGTH = 20;

    /**
     * @dev The `value` string doesn't fit in the specified `length`.
     */
    error StringsInsufficientHexLength(uint256 value, uint256 length);

    /**
     * @dev Converts a `uint256` to its ASCII `string` decimal representation.
     */
    function toString(uint256 value) internal pure returns (string memory) {
        unchecked {
            uint256 length = Math.log10(value) + 1;
            string memory buffer = new string(length);
            uint256 ptr;
            /// @solidity memory-safe-assembly
            assembly {
                ptr := add(buffer, add(32, length))
            }
            while (true) {
                ptr--;
                /// @solidity memory-safe-assembly
                assembly {
                    mstore8(ptr, byte(mod(value, 10), HEX_DIGITS))
                }
                value /= 10;
                if (value == 0) break;
            }
            return buffer;
        }
    }

    /**
     * @dev Converts a `int256` to its ASCII `string` decimal representation.
     */
    function toStringSigned(int256 value) internal pure returns (string memory) {
        return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value)));
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
     */
    function toHexString(uint256 value) internal pure returns (string memory) {
        unchecked {
            return toHexString(value, Math.log256(value) + 1);
        }
    }

    /**
     * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
     */
    function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {
        uint256 localValue = value;
        bytes memory buffer = new bytes(2 * length + 2);
        buffer[0] = "0";
        buffer[1] = "x";
        for (uint256 i = 2 * length + 1; i > 1; --i) {
            buffer[i] = HEX_DIGITS[localValue & 0xf];
            localValue >>= 4;
        }
        if (localValue != 0) {
            revert StringsInsufficientHexLength(value, length);
        }
        return string(buffer);
    }

    /**
     * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal
     * representation.
     */
    function toHexString(address addr) internal pure returns (string memory) {
        return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH);
    }

    /**
     * @dev Returns true if the two strings are equal.
     */
    function equal(string memory a, string memory b) internal pure returns (bool) {
        return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b));
    }
}

File 3 of 9 : Math.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard math utilities missing in the Solidity language.
 */
library Math {
    /**
     * @dev Muldiv operation overflow.
     */
    error MathOverflowedMulDiv();

    enum Rounding {
        Floor, // Toward negative infinity
        Ceil, // Toward positive infinity
        Trunc, // Toward zero
        Expand // Away from zero
    }

    /**
     * @dev Returns the addition of two unsigned integers, with an overflow flag.
     */
    function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            uint256 c = a + b;
            if (c < a) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the subtraction of two unsigned integers, with an overflow flag.
     */
    function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b > a) return (false, 0);
            return (true, a - b);
        }
    }

    /**
     * @dev Returns the multiplication of two unsigned integers, with an overflow flag.
     */
    function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            // Gas optimization: this is cheaper than requiring 'a' not being zero, but the
            // benefit is lost if 'b' is also tested.
            // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
            if (a == 0) return (true, 0);
            uint256 c = a * b;
            if (c / a != b) return (false, 0);
            return (true, c);
        }
    }

    /**
     * @dev Returns the division of two unsigned integers, with a division by zero flag.
     */
    function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a / b);
        }
    }

    /**
     * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
     */
    function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
        unchecked {
            if (b == 0) return (false, 0);
            return (true, a % b);
        }
    }

    /**
     * @dev Returns the largest of two numbers.
     */
    function max(uint256 a, uint256 b) internal pure returns (uint256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two numbers.
     */
    function min(uint256 a, uint256 b) internal pure returns (uint256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two numbers. The result is rounded towards
     * zero.
     */
    function average(uint256 a, uint256 b) internal pure returns (uint256) {
        // (a + b) / 2 can overflow.
        return (a & b) + (a ^ b) / 2;
    }

    /**
     * @dev Returns the ceiling of the division of two numbers.
     *
     * This differs from standard division with `/` in that it rounds towards infinity instead
     * of rounding towards zero.
     */
    function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
        if (b == 0) {
            // Guarantee the same behavior as in a regular Solidity division.
            return a / b;
        }

        // (a + b - 1) / b can overflow on addition, so we distribute.
        return a == 0 ? 0 : (a - 1) / b + 1;
    }

    /**
     * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
     * denominator == 0.
     * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
     * Uniswap Labs also under MIT license.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
        unchecked {
            // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
            // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
            // variables such that product = prod1 * 2^256 + prod0.
            uint256 prod0 = x * y; // Least significant 256 bits of the product
            uint256 prod1; // Most significant 256 bits of the product
            assembly {
                let mm := mulmod(x, y, not(0))
                prod1 := sub(sub(mm, prod0), lt(mm, prod0))
            }

            // Handle non-overflow cases, 256 by 256 division.
            if (prod1 == 0) {
                // Solidity will revert if denominator == 0, unlike the div opcode on its own.
                // The surrounding unchecked block does not change this fact.
                // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
                return prod0 / denominator;
            }

            // Make sure the result is less than 2^256. Also prevents denominator == 0.
            if (denominator <= prod1) {
                revert MathOverflowedMulDiv();
            }

            ///////////////////////////////////////////////
            // 512 by 256 division.
            ///////////////////////////////////////////////

            // Make division exact by subtracting the remainder from [prod1 prod0].
            uint256 remainder;
            assembly {
                // Compute remainder using mulmod.
                remainder := mulmod(x, y, denominator)

                // Subtract 256 bit number from 512 bit number.
                prod1 := sub(prod1, gt(remainder, prod0))
                prod0 := sub(prod0, remainder)
            }

            // Factor powers of two out of denominator and compute largest power of two divisor of denominator.
            // Always >= 1. See https://cs.stackexchange.com/q/138556/92363.

            uint256 twos = denominator & (0 - denominator);
            assembly {
                // Divide denominator by twos.
                denominator := div(denominator, twos)

                // Divide [prod1 prod0] by twos.
                prod0 := div(prod0, twos)

                // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
                twos := add(div(sub(0, twos), twos), 1)
            }

            // Shift in bits from prod1 into prod0.
            prod0 |= prod1 * twos;

            // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
            // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
            // four bits. That is, denominator * inv = 1 mod 2^4.
            uint256 inverse = (3 * denominator) ^ 2;

            // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
            // works in modular arithmetic, doubling the correct bits in each step.
            inverse *= 2 - denominator * inverse; // inverse mod 2^8
            inverse *= 2 - denominator * inverse; // inverse mod 2^16
            inverse *= 2 - denominator * inverse; // inverse mod 2^32
            inverse *= 2 - denominator * inverse; // inverse mod 2^64
            inverse *= 2 - denominator * inverse; // inverse mod 2^128
            inverse *= 2 - denominator * inverse; // inverse mod 2^256

            // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
            // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
            // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
            // is no longer required.
            result = prod0 * inverse;
            return result;
        }
    }

    /**
     * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
     */
    function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
        uint256 result = mulDiv(x, y, denominator);
        if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
            result += 1;
        }
        return result;
    }

    /**
     * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
     * towards zero.
     *
     * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
     */
    function sqrt(uint256 a) internal pure returns (uint256) {
        if (a == 0) {
            return 0;
        }

        // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
        //
        // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
        // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
        //
        // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
        // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
        // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
        //
        // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
        uint256 result = 1 << (log2(a) >> 1);

        // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
        // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
        // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
        // into the expected uint128 result.
        unchecked {
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            result = (result + a / result) >> 1;
            return min(result, a / result);
        }
    }

    /**
     * @notice Calculates sqrt(a), following the selected rounding direction.
     */
    function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = sqrt(a);
            return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 2 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log2(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 128;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 64;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 32;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 16;
            }
            if (value >> 8 > 0) {
                value >>= 8;
                result += 8;
            }
            if (value >> 4 > 0) {
                value >>= 4;
                result += 4;
            }
            if (value >> 2 > 0) {
                value >>= 2;
                result += 2;
            }
            if (value >> 1 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 2, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log2(value);
            return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 10 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     */
    function log10(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >= 10 ** 64) {
                value /= 10 ** 64;
                result += 64;
            }
            if (value >= 10 ** 32) {
                value /= 10 ** 32;
                result += 32;
            }
            if (value >= 10 ** 16) {
                value /= 10 ** 16;
                result += 16;
            }
            if (value >= 10 ** 8) {
                value /= 10 ** 8;
                result += 8;
            }
            if (value >= 10 ** 4) {
                value /= 10 ** 4;
                result += 4;
            }
            if (value >= 10 ** 2) {
                value /= 10 ** 2;
                result += 2;
            }
            if (value >= 10 ** 1) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 10, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log10(value);
            return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
        }
    }

    /**
     * @dev Return the log in base 256 of a positive value rounded towards zero.
     * Returns 0 if given 0.
     *
     * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
     */
    function log256(uint256 value) internal pure returns (uint256) {
        uint256 result = 0;
        unchecked {
            if (value >> 128 > 0) {
                value >>= 128;
                result += 16;
            }
            if (value >> 64 > 0) {
                value >>= 64;
                result += 8;
            }
            if (value >> 32 > 0) {
                value >>= 32;
                result += 4;
            }
            if (value >> 16 > 0) {
                value >>= 16;
                result += 2;
            }
            if (value >> 8 > 0) {
                result += 1;
            }
        }
        return result;
    }

    /**
     * @dev Return the log in base 256, following the selected rounding direction, of a positive value.
     * Returns 0 if given 0.
     */
    function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
        unchecked {
            uint256 result = log256(value);
            return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
        }
    }

    /**
     * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
     */
    function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
        return uint8(rounding) % 2 == 1;
    }
}

File 4 of 9 : SignedMath.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol)

pragma solidity ^0.8.20;

/**
 * @dev Standard signed math utilities missing in the Solidity language.
 */
library SignedMath {
    /**
     * @dev Returns the largest of two signed numbers.
     */
    function max(int256 a, int256 b) internal pure returns (int256) {
        return a > b ? a : b;
    }

    /**
     * @dev Returns the smallest of two signed numbers.
     */
    function min(int256 a, int256 b) internal pure returns (int256) {
        return a < b ? a : b;
    }

    /**
     * @dev Returns the average of two signed numbers without overflow.
     * The result is rounded towards zero.
     */
    function average(int256 a, int256 b) internal pure returns (int256) {
        // Formula from the book "Hacker's Delight"
        int256 x = (a & b) + ((a ^ b) >> 1);
        return x + (int256(uint256(x) >> 255) & (a ^ b));
    }

    /**
     * @dev Returns the absolute unsigned value of a signed value.
     */
    function abs(int256 n) internal pure returns (uint256) {
        unchecked {
            // must be unchecked in order to support `n = type(int256).min`
            return uint256(n >= 0 ? n : -n);
        }
    }
}

File 5 of 9 : ContractURILib.sol
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

import {IContractURI} from "./IContractURI.sol";
import {AccessControlRecursiveLib} from "../access/AccessControlRecursiveLib.sol";

/**
 * @dev Implements contract uri getter/setter
 */
library ContractURILib {
    bytes32 internal constant CONTRACT_URI_ROLE = bytes32(IContractURI.setContractURI.selector);

    bytes32 constant CONTRACT_URI_STORAGE =
        keccak256(abi.encode(uint256(keccak256("owlprotocol.storage.ContractURI")) - 1)) & ~bytes32(uint256(0xff));

    /// @custom:storage-location erc7201:owlprotocol.storage.ContractURI
    struct ContractURIStorage {
        string value;
    }

    function getData() internal pure returns (ContractURIStorage storage ds) {
        bytes32 position = CONTRACT_URI_STORAGE;
        assembly {
            ds.slot := position
        }
    }

    function _init(string memory uri) internal {
        __unsafe_setContractURI(uri);
    }

    /**
     * @dev Returns collection-wide URI-accessible metadata
     */
    function _contractURI() internal view returns (string memory) {
        return getData().value;
    }

    function _setContractURI(string memory uri) internal {
        AccessControlRecursiveLib._checkRoleRecursive(CONTRACT_URI_ROLE, msg.sender);
        __unsafe_setContractURI(uri);
    }

    function __unsafe_setContractURI(string memory uri) internal {
        getData().value = uri;
    }
}

File 6 of 9 : IContractURI.sol
//SPDX-License-Identifier: MIT
pragma solidity ^0.8.20;

/**
 * @dev IContractURI defines a contract with metadata. A 1:1 relationship between contract address and metdata uri.
 */
interface IContractURI {
    function contractURI() external view returns (string memory);
    function setContractURI(string memory uri) external;
}

File 7 of 9 : AccessControlLib.sol
// SPDX-License-Identifier: MIT
// Originally from
// OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol)

/**
 * We updated the AccessControl to be a library that can then be used in AccessControlFacet
 */

pragma solidity ^0.8.20;
import {IAccessControl} from "./IAccessControl.sol";

/**
 * @dev Library module that allows children to implement role-based access
 * control mechanisms. This is a lightweight version that doesn't allow enumerating role
 * members except through off-chain means by accessing the contract event logs. Some
 * applications may benefit from on-chain enumerability, for those cases see
 * {AccessControlEnumerable}.
 *
 * Roles are referred to by their `bytes32` identifier. These should be exposed
 * in the external API and be unique. The best way to achieve this is by
 * using `public constant` hash digests:
 *
 * ```solidity
 * bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
 * ```
 *
 * Roles can be used to represent a set of permissions. To restrict access to a
 * function call, use {hasRole}:
 *
 * ```solidity
 * function foo() public {
 *     require(hasRole(MY_ROLE, msg.sender));
 *     ...
 * }
 * ```
 *
 * Roles can be granted and revoked dynamically via the {grantRole} and
 * {revokeRole} functions. Each role has an associated admin role, and only
 * accounts that have a role's admin role can call {grantRole} and {revokeRole}.
 *
 * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
 * that only accounts with this role will be able to grant or revoke other
 * roles. More complex role relationships can be created by using
 * {_setRoleAdmin}.
 *
 * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
 * grant and revoke this role. Extra precautions should be taken to secure
 * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules}
 * to enforce additional security measures for this role.
 */
library AccessControlLib {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Cannot assign `NULL_ROLE`
     */
    error AccessControlCannotSetNullRole();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    bytes32 constant DEFAULT_ADMIN_ROLE = 0x00;
    /**
     * The original OpenZeppelin AccessControl contract defines roles that each have an
     * `adminRole`. This is useful as a common pattern is to have the `grantRole` function
     * gated to addresses that have the `adminRole` of the role that is being currently granted.
     *
     * By default, roles have `adminRole` of `0x00` (since the storage is just empty). This is
     * also the `DEFAULT_ADMIN_ROLE`. In general, this is quite practical since we can assign
     * `DEFAULT_ADMIN_ROLE` to one address which can then distribute required roles. If we
     * visualize the relationship between roles and their `adminRole` as a tree structure we
     * realize that the root of this tree is ALWAYS the `adminRole`.
     *
     *          DEFAULT_ADMIN_ROLE
     *              /       \
     *            RoleA     RoleB
     *            /
     *          RoleC
     *
     * In other words, `DEFAULT_ADMIN_ROLE` is the indirect admin of ALL roles since it can
     * always assign itself the required roles. In this example, admin could
     * `grantRole(RoleA, msg.sender)`. The AccessControlRecursive module implements similar
     * recursive logic to support the same business logic in more scalable fashion.
     *
     * Having the admin be able to manage roles is usually good but we have a problem however.
     * How can we assign roles and freeze them, making sure that no one can re-assign the role
     * to other addresses? Only two solutions are possible:
     * 1. Renouce the `DEFAULT_ADMIN_ROLE`
     * 2. Add a `NULL_ROLE`, make it never assignable, and set that as the roles new `adminRole`
     *
     * Solution 1 is the simplest, but has the main drawback that by relinquishing the
     * `DEFAULT_ADMIN_ROLE` (forever), we lose the flexibility of being able to assign new roles,
     * especially roles with new identifiers.
     * We define `NULL_ROLE` as the `0xFF..F` (bytes32), in contrast with `0x00`.
     *
     */
    bytes32 constant NULL_ROLE = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;

    //https://eips.ethereum.org/EIPS/eip-7201
    bytes32 constant ACCESS_CONTROL_STORAGE =
        keccak256(abi.encode(uint256(keccak256("owlprotocol.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff));

    struct RoleData {
        mapping(address account => bool) hasRole;
        bytes32 adminRole;
    }

    /// @custom:storage-location erc7201:owlprotocol.storage.AccessControl
    struct AccessControlStorage {
        mapping(bytes32 role => RoleData) roles;
    }

    function getData() internal pure returns (AccessControlStorage storage ds) {
        bytes32 position = ACCESS_CONTROL_STORAGE;
        assembly {
            ds.slot := position
        }
    }

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function _hasRole(bytes32 role, address account) internal view returns (bool) {
        return getData().roles[role].hasRole[account];
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()`
     * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier.
     */
    function _checkRole(bytes32 role) internal view {
        _checkRole(role, msg.sender);
    }

    /**
     * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account`
     * is missing `role`.
     */
    function _checkRole(bytes32 role, address account) internal view {
        if (!_hasRole(role, account)) {
            revert IAccessControl.AccessControlUnauthorizedAccount(account, role);
        }
    }

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {_setRoleAdmin}.
     */
    function _getRoleAdmin(bytes32 role) internal view returns (bytes32) {
        //`NULL_ROLE`'s adminRole is always itself
        if (role == NULL_ROLE) {
            return NULL_ROLE;
        }

        return getData().roles[role].adminRole;
    }

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been revoked `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     *
     * May emit a {RoleRevoked} event.
     */
    function _renounceRole(bytes32 role, address callerConfirmation) internal {
        if (callerConfirmation != msg.sender) {
            revert IAccessControl.AccessControlBadConfirmation();
        }

        //use __unsafe here, no permissions check as removing self from role
        __unsafe_revokeRole(role, callerConfirmation);
    }

    function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal {
        _checkRole(AccessControlLib._getRoleAdmin(role), msg.sender);
        __unsafe_setRoleAdmin(role, adminRole);
    }

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.
     */
    function __unsafe_setRoleAdmin(bytes32 role, bytes32 adminRole) internal {
        //Cannot set `NULL_ROLE` adminRole (it is always itself)
        if (role == NULL_ROLE) {
            revert AccessControlCannotSetNullRole();
        }

        //You MAY set `NULL_ROLE` as a role's `adminRole` however
        bytes32 previousAdminRole = _getRoleAdmin(role);
        getData().roles[role].adminRole = adminRole;
        emit RoleAdminChanged(role, previousAdminRole, adminRole);
    }

    function _grantRole(bytes32 role, address account) internal returns (bool) {
        _checkRole(AccessControlLib._getRoleAdmin(role), msg.sender);
        return __unsafe_grantRole(role, account);
    }

    /**
     * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleGranted} event.
     */
    function __unsafe_grantRole(bytes32 role, address account) internal returns (bool) {
        //Cannot assign `NULL_ROLE` to ANY address
        if (role == NULL_ROLE) {
            revert AccessControlCannotSetNullRole();
        }

        if (!_hasRole(role, account)) {
            getData().roles[role].hasRole[account] = true;
            emit RoleGranted(role, account, msg.sender);
            return true;
        } else {
            return false;
        }
    }

    function _revokeRole(bytes32 role, address account) internal returns (bool) {
        _checkRole(AccessControlLib._getRoleAdmin(role), msg.sender);
        return __unsafe_revokeRole(role, account);
    }

    /**
     * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked.
     *
     * Internal function without access restriction.
     *
     * May emit a {RoleRevoked} event.
     */
    function __unsafe_revokeRole(bytes32 role, address account) internal returns (bool) {
        if (_hasRole(role, account)) {
            getData().roles[role].hasRole[account] = false;
            emit RoleRevoked(role, account, msg.sender);
            return true;
        } else {
            return false;
        }
    }
}

File 8 of 9 : AccessControlRecursiveLib.sol
// SPDX-License-Identifier: MIT

pragma solidity ^0.8.20;

import {Strings} from "@openzeppelin/contracts/utils/Strings.sol";
import {AccessControlLib} from "./AccessControlLib.sol";

/**
 * @dev Library module that allows nested role checks. If an address has a role (PARENT) that is the admin of another role (CHILD),
 * it is assumed to also have that role (CHILD) since it can at any time grant itself such role.
 */
library AccessControlRecursiveLib {
    /** Recursive Role Checks */
    /**
     * @dev Returns `true` if `account` has been granted `role`  or `role`'s admin.
     */
    function _hasRoleRecursive(bytes32 role, address account) internal view returns (bool) {
        //This terminates early and avoids gas overflow with infinite recursion
        if (role == AccessControlLib.NULL_ROLE) return false;
        if (role == AccessControlLib.DEFAULT_ADMIN_ROLE) return AccessControlLib._hasRole(role, account);

        return
            AccessControlLib._hasRole(role, account) ||
            _hasRoleRecursive(AccessControlLib._getRoleAdmin(role), account);
    }

    /**
     * @dev Revert with a standard message if `_msgSender()` is missing `role`  or `role`'s admin.
     * Overriding this function changes the behavior of the {onlyRole} modifier.
     *
     * Format of the revert message is described in {_checkRole}.
     *
     * _Available since v4.6._
     */
    function _checkRoleRecursive(bytes32 role) internal view {
        _checkRoleRecursive(role, msg.sender);
    }

    /**
     * @dev Revert with a standard message if `account` is missing `role` or `role`'s admin.
     *
     * The format of the revert reason is given by the following regular expression:
     *
     *  /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
     */
    function _checkRoleRecursive(bytes32 role, address account) internal view {
        if (!_hasRoleRecursive(role, account)) {
            revert(
                string(
                    abi.encodePacked(
                        "AccessControlRecursive: account ",
                        Strings.toHexString(account),
                        " is missing role (or recursive adminRole of)",
                        Strings.toHexString(uint256(role), 32)
                    )
                )
            );
        }
    }

    function _setRoleAdminRecursive(bytes32 role, bytes32 adminRole) internal {
        _checkRoleRecursive(AccessControlLib._getRoleAdmin(role), msg.sender);
        AccessControlLib.__unsafe_setRoleAdmin(role, adminRole);
    }

    function _grantRoleRecursive(bytes32 role, address account) internal returns (bool) {
        _checkRoleRecursive(AccessControlLib._getRoleAdmin(role), msg.sender);
        return AccessControlLib.__unsafe_grantRole(role, account);
    }

    function _revokeRoleRecursive(bytes32 role, address account) internal returns (bool) {
        _checkRoleRecursive(AccessControlLib._getRoleAdmin(role), msg.sender);
        return AccessControlLib.__unsafe_revokeRole(role, account);
    }
}

File 9 of 9 : IAccessControl.sol
// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol)

pragma solidity ^0.8.20;

/**
 * @dev External interface of AccessControl declared to support ERC-165 detection.
 */
interface IAccessControl {
    /**
     * @dev The `account` is missing a role.
     */
    error AccessControlUnauthorizedAccount(address account, bytes32 neededRole);

    /**
     * @dev The caller of a function is not the expected one.
     *
     * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}.
     */
    error AccessControlBadConfirmation();

    /**
     * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
     *
     * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
     * {RoleAdminChanged} not being emitted signaling this.
     */
    event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);

    /**
     * @dev Emitted when `account` is granted `role`.
     *
     * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role).
     * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}.
     */
    event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Emitted when `account` is revoked `role`.
     *
     * `sender` is the account that originated the contract call:
     *   - if using `revokeRole`, it is the admin role bearer
     *   - if using `renounceRole`, it is the role bearer (i.e. `account`)
     */
    event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);

    /**
     * @dev Returns `true` if `account` has been granted `role`.
     */
    function hasRole(bytes32 role, address account) external view returns (bool);

    /**
     * @dev Returns the admin role that controls `role`. See {grantRole} and
     * {revokeRole}.
     *
     * To change a role's admin, use {AccessControl-_setRoleAdmin}.
     */
    function getRoleAdmin(bytes32 role) external view returns (bytes32);

    /**
     * @dev Sets `adminRole` as ``role``'s admin role.
     *
     * Emits a {RoleAdminChanged} event.

     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function setRoleAdmin(bytes32 role, bytes32 adminRole) external;

    /**
     * @dev Grants `role` to `account`.
     *
     * If `account` had not been already granted `role`, emits a {RoleGranted}
     * event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function grantRole(bytes32 role, address account) external returns (bool);

    /**
     * @dev Revokes `role` from `account`.
     *
     * If `account` had been granted `role`, emits a {RoleRevoked} event.
     *
     * Requirements:
     *
     * - the caller must have ``role``'s admin role.
     */
    function revokeRole(bytes32 role, address account) external returns (bool);

    /**
     * @dev Revokes `role` from the calling account.
     *
     * Roles are often managed via {grantRole} and {revokeRole}: this function's
     * purpose is to provide a mechanism for accounts to lose their privileges
     * if they are compromised (such as when a trusted device is misplaced).
     *
     * If the calling account had been granted `role`, emits a {RoleRevoked}
     * event.
     *
     * Requirements:
     *
     * - the caller must be `callerConfirmation`.
     */
    function renounceRole(bytes32 role, address callerConfirmation) external;
}

Settings
{
  "metadata": {
    "bytecodeHash": "ipfs",
    "useLiteralContent": true
  },
  "optimizer": {
    "enabled": true,
    "runs": 1000000
  },
  "evmVersion": "paris",
  "viaIR": true,
  "outputSelection": {
    "*": {
      "*": [
        "evm.bytecode",
        "evm.deployedBytecode",
        "devdoc",
        "userdoc",
        "metadata",
        "abi"
      ]
    }
  }
}

Contract ABI

[{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"length","type":"uint256"}],"name":"StringsInsufficientHexLength","type":"error"},{"inputs":[],"name":"contractURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"uri","type":"string"}],"name":"setContractURI","outputs":[],"stateMutability":"nonpayable","type":"function"}]

6080806040523461001657610bc2908161001c8239f35b600080fdfe6080604081815260048036101561001557600080fd5b600092833560e01c918263938e3d7b1461014057505063e8a3d4851461003a57600080fd5b3461013c57817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261013c5761007061096d565b908051918381546100808161091a565b918286526020936001926001811690816000146100fa57506001146100bf575b6100bb87876100b1828c038361086c565b51918291826108d0565b0390f35b9080949750528583205b8284106100e757505050826100bb946100b1928201019438806100a0565b80548685018801529286019281016100c9565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168887015250505050151560051b83010192506100b1826100bb38806100a0565b5080fd5b8490843461081d576020807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126108195782359067ffffffffffffffff92838311610815573660238401121561081557602490858401358581116107ea577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0946101d38587601f850116018b61086c565b818a52368483830101116107e65781899285879301838d01378a0101527f938e3d7b0000000000000000000000000000000000000000000000000000000061021b33826109cd565b1561038f57505061022a61096d565b948751948511610365575050610240845461091a565b601f8111610322575b508091601f84116001146102a3575050839482939492610298575b50507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8260011b9260031b1c191617905580f35b015190508480610264565b8392919216958486528286209286905b88821061030a575050836001959697106102d3575b505050811b01905580f35b01517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60f88460031b161c191690558480806102c8565b806001859682949686015181550195019301906102b3565b848652818620601f850160051c81019183861061035b575b601f0160051c01905b8181106103505750610249565b868155600101610343565b909150819061033a565b604187917f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b838887858a94339187519160608301838110868211176107bb578952602a83528683019389368637835115610790576030855383519060019160011015610765576078602186015360295b8281116106a3575061066e5781908a5196608088019088821090821117610643578b5260428752888701976060368a3787511561061857603089538751600110156106185790607860218901536041915b8183116105525750505061051e577f416363657373436f6e74726f6c5265637572736976653a206163636f756e74208861051a8b6104ec606c8c8c8c6104dd8d6104838e89519c8d978801525180928a8801906108ad565b8401917f206973206d697373696e6720726f6c6520286f72207265637572736976652061888401527f646d696e526f6c65206f662900000000000000000000000000000000000000006060840152518093868401906108ad565b0103604c81018752018561086c565b519283927f08c379a000000000000000000000000000000000000000000000000000000000845283016108d0565b0390fd5b8660449289928b51937fe22e27eb000000000000000000000000000000000000000000000000000000008552840152820152fd5b909192600f811660108110156105ed577f3031323334353637383961626364656600000000000000000000000000000000901a61058f858b610aaa565b538b1c9280156105c2577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff01919061042b565b858260118e7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b868360328f7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8060328c7f4e487b710000000000000000000000000000000000000000000000000000000088945252fd5b848960418d7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b89517fe22e27eb00000000000000000000000000000000000000000000000000000000815233818b0152601481850152604490fd5b90600f8116601081101561073a577f3031323334353637383961626364656600000000000000000000000000000000901a6106de8388610aaa565b538a1c90801561070f577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff016103da565b848960118d7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b858a60328e7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b838860328c7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b828760328b7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b828760418b7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8880fd5b82886041897f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8580fd5b8380fd5b8280fd5b6040810190811067ffffffffffffffff82111761083d57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761083d57604052565b60005b8381106108c05750506000910152565b81810151838201526020016108b0565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f6040936020845261091381518092816020880152602088880191016108ad565b0116010190565b90600182811c92168015610963575b602083101461093457565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b91607f1691610929565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0060405160208101907f436b3d8f2dec49d3b39910c939cd947060bd262a7ee58aef870ec5be9091c6b68252602081526109c681610821565b5190201690565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8214610aa3578115610a5e57610a03610b33565b8260005260205260ff610a3a8260406000209073ffffffffffffffffffffffffffffffffffffffff16600052602052604060002090565b5416918215610a4857505090565b610a5b9250610a5690610aea565b6109cd565b90565b610a9e9060ff92610a6d610b33565b9060005260205260406000209073ffffffffffffffffffffffffffffffffffffffff16600052602052604060002090565b541690565b5050600090565b908151811015610abb570160200190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff808214610b2e5750610b1b610b33565b9060005260205260016040600020015490565b905090565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0060405160208101907fd1321ee61a876da401624339757acb6ccd44461db2a32f606a86a30b761f18138252602081526109c68161082156fea26469706673582212204425b8aec1053b442d76917c1dcb42d6770b8416a176654a6c441a2a81862d7c64736f6c63430008170033

Deployed Bytecode

0x6080604081815260048036101561001557600080fd5b600092833560e01c918263938e3d7b1461014057505063e8a3d4851461003a57600080fd5b3461013c57817ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc36011261013c5761007061096d565b908051918381546100808161091a565b918286526020936001926001811690816000146100fa57506001146100bf575b6100bb87876100b1828c038361086c565b51918291826108d0565b0390f35b9080949750528583205b8284106100e757505050826100bb946100b1928201019438806100a0565b80548685018801529286019281016100c9565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00168887015250505050151560051b83010192506100b1826100bb38806100a0565b5080fd5b8490843461081d576020807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126108195782359067ffffffffffffffff92838311610815573660238401121561081557602490858401358581116107ea577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0946101d38587601f850116018b61086c565b818a52368483830101116107e65781899285879301838d01378a0101527f938e3d7b0000000000000000000000000000000000000000000000000000000061021b33826109cd565b1561038f57505061022a61096d565b948751948511610365575050610240845461091a565b601f8111610322575b508091601f84116001146102a3575050839482939492610298575b50507fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8260011b9260031b1c191617905580f35b015190508480610264565b8392919216958486528286209286905b88821061030a575050836001959697106102d3575b505050811b01905580f35b01517fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff60f88460031b161c191690558480806102c8565b806001859682949686015181550195019301906102b3565b848652818620601f850160051c81019183861061035b575b601f0160051c01905b8181106103505750610249565b868155600101610343565b909150819061033a565b604187917f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b838887858a94339187519160608301838110868211176107bb578952602a83528683019389368637835115610790576030855383519060019160011015610765576078602186015360295b8281116106a3575061066e5781908a5196608088019088821090821117610643578b5260428752888701976060368a3787511561061857603089538751600110156106185790607860218901536041915b8183116105525750505061051e577f416363657373436f6e74726f6c5265637572736976653a206163636f756e74208861051a8b6104ec606c8c8c8c6104dd8d6104838e89519c8d978801525180928a8801906108ad565b8401917f206973206d697373696e6720726f6c6520286f72207265637572736976652061888401527f646d696e526f6c65206f662900000000000000000000000000000000000000006060840152518093868401906108ad565b0103604c81018752018561086c565b519283927f08c379a000000000000000000000000000000000000000000000000000000000845283016108d0565b0390fd5b8660449289928b51937fe22e27eb000000000000000000000000000000000000000000000000000000008552840152820152fd5b909192600f811660108110156105ed577f3031323334353637383961626364656600000000000000000000000000000000901a61058f858b610aaa565b538b1c9280156105c2577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff01919061042b565b858260118e7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b868360328f7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8060328c7f4e487b710000000000000000000000000000000000000000000000000000000088945252fd5b848960418d7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b89517fe22e27eb00000000000000000000000000000000000000000000000000000000815233818b0152601481850152604490fd5b90600f8116601081101561073a577f3031323334353637383961626364656600000000000000000000000000000000901a6106de8388610aaa565b538a1c90801561070f577fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff016103da565b848960118d7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b858a60328e7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b838860328c7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b828760328b7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b828760418b7f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8880fd5b82886041897f4e487b7100000000000000000000000000000000000000000000000000000000835252fd5b8580fd5b8380fd5b8280fd5b6040810190811067ffffffffffffffff82111761083d57604052565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052604160045260246000fd5b90601f7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0910116810190811067ffffffffffffffff82111761083d57604052565b60005b8381106108c05750506000910152565b81810151838201526020016108b0565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffe0601f6040936020845261091381518092816020880152602088880191016108ad565b0116010190565b90600182811c92168015610963575b602083101461093457565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052602260045260246000fd5b91607f1691610929565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0060405160208101907f436b3d8f2dec49d3b39910c939cd947060bd262a7ee58aef870ec5be9091c6b68252602081526109c681610821565b5190201690565b907fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff8214610aa3578115610a5e57610a03610b33565b8260005260205260ff610a3a8260406000209073ffffffffffffffffffffffffffffffffffffffff16600052602052604060002090565b5416918215610a4857505090565b610a5b9250610a5690610aea565b6109cd565b90565b610a9e9060ff92610a6d610b33565b9060005260205260406000209073ffffffffffffffffffffffffffffffffffffffff16600052602052604060002090565b541690565b5050600090565b908151811015610abb570160200190565b7f4e487b7100000000000000000000000000000000000000000000000000000000600052603260045260246000fd5b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff808214610b2e5750610b1b610b33565b9060005260205260016040600020015490565b905090565b7fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff0060405160208101907fd1321ee61a876da401624339757acb6ccd44461db2a32f606a86a30b761f18138252602081526109c68161082156fea26469706673582212204425b8aec1053b442d76917c1dcb42d6770b8416a176654a6c441a2a81862d7c64736f6c63430008170033

Block Transaction Difficulty Gas Used Reward
View All Blocks Produced

Block Uncle Number Difficulty Gas Used Reward
View All Uncles
Loading...
Loading
Loading...
Loading

Validator Index Block Amount
View All Withdrawals

Transaction Hash Block Value Eth2 PubKey Valid
View All Deposits
[ Download: CSV Export  ]

A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.