Source Code
Overview
APE Balance
0 APE
More Info
ContractCreator
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Loading...
Loading
Contract Source Code Verified (Exact Match)
Contract Name:
DiamondInit
Compiler Version
v0.8.23+commit.f704f362
Optimization Enabled:
Yes with 1000000 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import {ERC165Lib} from "../ERC165/ERC165Lib.sol"; import {IDiamondCut} from "./IDiamondCut.sol"; import {IDiamondLoupe} from "./IDiamondLoupe.sol"; import {DiamondLib} from "./DiamondLib.sol"; contract DiamondInit { function initialize() external { ERC165Lib.__unsafe_registerInterface(type(IDiamondCut).interfaceId, true); ERC165Lib.__unsafe_registerInterface(type(IDiamondLoupe).interfaceId, true); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Address.sol) pragma solidity ^0.8.20; /** * @dev Collection of functions related to the address type */ library Address { /** * @dev The ETH balance of the account is not enough to perform the operation. */ error AddressInsufficientBalance(address account); /** * @dev There's no code at `target` (it is not a contract). */ error AddressEmptyCode(address target); /** * @dev A call to an address target failed. The target may have reverted. */ error FailedInnerCall(); /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://consensys.net/diligence/blog/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.8.20/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { if (address(this).balance < amount) { revert AddressInsufficientBalance(address(this)); } (bool success, ) = recipient.call{value: amount}(""); if (!success) { revert FailedInnerCall(); } } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason or custom error, it is bubbled * up by this function (like regular Solidity function calls). However, if * the call reverted with no returned reason, this function reverts with a * {FailedInnerCall} error. * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue(target, data, 0); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. */ function functionCallWithValue(address target, bytes memory data, uint256 value) internal returns (bytes memory) { if (address(this).balance < value) { revert AddressInsufficientBalance(address(this)); } (bool success, bytes memory returndata) = target.call{value: value}(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a delegate call. */ function functionDelegateCall(address target, bytes memory data) internal returns (bytes memory) { (bool success, bytes memory returndata) = target.delegatecall(data); return verifyCallResultFromTarget(target, success, returndata); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and reverts if the target * was not a contract or bubbling up the revert reason (falling back to {FailedInnerCall}) in case of an * unsuccessful call. */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata ) internal view returns (bytes memory) { if (!success) { _revert(returndata); } else { // only check if target is a contract if the call was successful and the return data is empty // otherwise we already know that it was a contract if (returndata.length == 0 && target.code.length == 0) { revert AddressEmptyCode(target); } return returndata; } } /** * @dev Tool to verify that a low level call was successful, and reverts if it wasn't, either by bubbling the * revert reason or with a default {FailedInnerCall} error. */ function verifyCallResult(bool success, bytes memory returndata) internal pure returns (bytes memory) { if (!success) { _revert(returndata); } else { return returndata; } } /** * @dev Reverts with returndata if present. Otherwise reverts with {FailedInnerCall}. */ function _revert(bytes memory returndata) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert FailedInnerCall(); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/Strings.sol) pragma solidity ^0.8.20; import {Math} from "./math/Math.sol"; import {SignedMath} from "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant HEX_DIGITS = "0123456789abcdef"; uint8 private constant ADDRESS_LENGTH = 20; /** * @dev The `value` string doesn't fit in the specified `length`. */ error StringsInsufficientHexLength(uint256 value, uint256 length); /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), HEX_DIGITS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toStringSigned(int256 value) internal pure returns (string memory) { return string.concat(value < 0 ? "-" : "", toString(SignedMath.abs(value))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { uint256 localValue = value; bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = HEX_DIGITS[localValue & 0xf]; localValue >>= 4; } if (localValue != 0) { revert StringsInsufficientHexLength(value, length); } return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal * representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return bytes(a).length == bytes(b).length && keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/introspection/IERC165.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.20; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.20; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes32 value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import {Address} from "@openzeppelin/contracts/utils/Address.sol"; import {EnumerableMapAddressToSetBytes4} from "../utils/structs/EnumerableMapAddressToSetBytes4.sol"; error FunctionNotFound(bytes4 _functionSelector); library DiamondLib { bytes32 constant DIAMOND_STORAGE = keccak256(abi.encode(uint256(keccak256("diamond.standard.diamond.storage")) - 1)) & ~bytes32(uint256(0xff)); /// @custom:storage-location erc7201:diamond.standard.diamond.storage struct DiamondStorage { EnumerableMapAddressToSetBytes4.AddressToSetBytes4Map facets; mapping(bytes4 selector => address) selectors; } function diamondStorage() internal pure returns (DiamondStorage storage ds) { bytes32 position = DIAMOND_STORAGE; assembly { ds.slot := position } } function _fallback(bytes calldata data) internal returns (bytes memory) { DiamondLib.DiamondStorage storage ds = DiamondLib.diamondStorage(); bytes4 sig = bytes4(data[:4]); // get facet from function selector address facet = ds.selectors[sig]; if (facet == address(0)) { revert FunctionNotFound(sig); } return Address.functionDelegateCall(facet, data); } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; //Originally from https://github.com/mudgen/diamond-1 //*****************************************************************************\ //* Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) //* EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 //******************************************************************************/ interface IDiamond { enum FacetCutAction { Add, Replace, Remove, Set } // Change: We add the `Set` option to enum to simplify. // This does not change uint4 size of the enum // Add=0, Replace=1, Remove=2, Set=3 struct FacetCut { address facetAddress; FacetCutAction action; bytes4[] functionSelectors; } event DiamondCut(FacetCut[] _diamondCut, address _init, bytes _calldata); }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; //******************************************************************************\ //* Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) //* EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 //******************************************************************************/ import {IDiamond} from "./IDiamond.sol"; interface IDiamondCut is IDiamond { /// @notice Add/replace/remove any number of functions and optionally execute /// a function with delegatecall /// @param _diamondCut Contains the facet addresses and function selectors /// @param _init The address of the contract or facet to execute _calldata /// @param _calldata A function call, including function selector and arguments /// _calldata is executed with delegatecall on _init function diamondCut(FacetCut[] calldata _diamondCut, address _init, bytes calldata _calldata) external; }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; //Originally from https://github.com/mudgen/diamond-1 //******************************************************************************\ //* Author: Nick Mudge <[email protected]> (https://twitter.com/mudgen) //* EIP-2535 Diamonds: https://eips.ethereum.org/EIPS/eip-2535 //******************************************************************************/ // A loupe is a small magnifying glass used to look at diamonds. // These functions look at diamonds interface IDiamondLoupe { /// These functions are expected to be called frequently /// by tools. struct Facet { address facetAddress; bytes4[] functionSelectors; } /// @notice Gets all facet addresses and their four byte function selectors. /// @return facets_ Facet function facets() external view returns (Facet[] memory facets_); /// @notice Gets all the function selectors supported by a specific facet. /// @param _facet The facet address. /// @return facetFunctionSelectors_ function facetFunctionSelectors(address _facet) external view returns (bytes4[] memory facetFunctionSelectors_); /// @notice Get all the facet addresses used by a diamond. /// @return facetAddresses_ function facetAddresses() external view returns (address[] memory facetAddresses_); /// @notice Gets the facet that supports the given selector. /// @dev If facet is not found return address(0). /// @param _functionSelector The function selector. /// @return facetAddress_ The facet address. function facetAddress(bytes4 _functionSelector) external view returns (address facetAddress_); }
//SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import {AccessControlRecursiveLib} from "../access/AccessControlRecursiveLib.sol"; import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; import {IERC165Register} from "./IERC165Register.sol"; library ERC165Lib { bytes32 internal constant ERC165_ROLE = bytes32(IERC165Register.registerInterface.selector); bytes32 constant ERC165_STORAGE = keccak256(abi.encode(uint256(keccak256("erc165.storage")) - 1)) & ~bytes32(uint256(0xff)); /// @custom:storage-location erc7201:erc165.storage struct ERC165Storage { mapping(bytes32 interfaceId => bool) _supportedInterfaces; } function getData() internal pure returns (ERC165Storage storage ds) { bytes32 position = ERC165_STORAGE; assembly { ds.slot := position } } function _init() internal { __unsafe_registerInterface(type(IERC165).interfaceId, true); } function _registerInterface(bytes4 interfaceId, bool supported) internal { AccessControlRecursiveLib._checkRoleRecursive(ERC165Lib.ERC165_ROLE, msg.sender); __unsafe_registerInterface(interfaceId, supported); } function __unsafe_registerInterface(bytes4 interfaceId, bool supported) internal { getData()._supportedInterfaces[interfaceId] = supported; } function _supportsInterface(bytes4 interfaceId) internal view returns (bool) { return getData()._supportedInterfaces[interfaceId]; } }
//SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import {IERC165} from "@openzeppelin/contracts/utils/introspection/IERC165.sol"; /** * @dev IERC165 contract that stores its interface id support data. This is usually not * recommended due to gas overhead but is required when using an upgradeable Diamond contract. */ interface IERC165Register is IERC165 { function registerInterface(bytes4 interfaceId, bool supported) external; }
// SPDX-License-Identifier: MIT // Originally from // OpenZeppelin Contracts (last updated v5.0.0) (access/AccessControl.sol) /** * We updated the AccessControl to be a library that can then be used in AccessControlFacet */ pragma solidity ^0.8.20; import {IAccessControl} from "./IAccessControl.sol"; /** * @dev Library module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ```solidity * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules} * to enforce additional security measures for this role. */ library AccessControlLib { /** * @dev The `account` is missing a role. */ error AccessControlUnauthorizedAccount(address account, bytes32 neededRole); /** * @dev The caller of a function is not the expected one. * * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}. */ error AccessControlBadConfirmation(); /** * @dev Cannot assign `NULL_ROLE` */ error AccessControlCannotSetNullRole(); /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role). * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); bytes32 constant DEFAULT_ADMIN_ROLE = 0x00; /** * The original OpenZeppelin AccessControl contract defines roles that each have an * `adminRole`. This is useful as a common pattern is to have the `grantRole` function * gated to addresses that have the `adminRole` of the role that is being currently granted. * * By default, roles have `adminRole` of `0x00` (since the storage is just empty). This is * also the `DEFAULT_ADMIN_ROLE`. In general, this is quite practical since we can assign * `DEFAULT_ADMIN_ROLE` to one address which can then distribute required roles. If we * visualize the relationship between roles and their `adminRole` as a tree structure we * realize that the root of this tree is ALWAYS the `adminRole`. * * DEFAULT_ADMIN_ROLE * / \ * RoleA RoleB * / * RoleC * * In other words, `DEFAULT_ADMIN_ROLE` is the indirect admin of ALL roles since it can * always assign itself the required roles. In this example, admin could * `grantRole(RoleA, msg.sender)`. The AccessControlRecursive module implements similar * recursive logic to support the same business logic in more scalable fashion. * * Having the admin be able to manage roles is usually good but we have a problem however. * How can we assign roles and freeze them, making sure that no one can re-assign the role * to other addresses? Only two solutions are possible: * 1. Renouce the `DEFAULT_ADMIN_ROLE` * 2. Add a `NULL_ROLE`, make it never assignable, and set that as the roles new `adminRole` * * Solution 1 is the simplest, but has the main drawback that by relinquishing the * `DEFAULT_ADMIN_ROLE` (forever), we lose the flexibility of being able to assign new roles, * especially roles with new identifiers. * We define `NULL_ROLE` as the `0xFF..F` (bytes32), in contrast with `0x00`. * */ bytes32 constant NULL_ROLE = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF; //https://eips.ethereum.org/EIPS/eip-7201 bytes32 constant ACCESS_CONTROL_STORAGE = keccak256(abi.encode(uint256(keccak256("owlprotocol.storage.AccessControl")) - 1)) & ~bytes32(uint256(0xff)); struct RoleData { mapping(address account => bool) hasRole; bytes32 adminRole; } /// @custom:storage-location erc7201:owlprotocol.storage.AccessControl struct AccessControlStorage { mapping(bytes32 role => RoleData) roles; } function getData() internal pure returns (AccessControlStorage storage ds) { bytes32 position = ACCESS_CONTROL_STORAGE; assembly { ds.slot := position } } /** * @dev Returns `true` if `account` has been granted `role`. */ function _hasRole(bytes32 role, address account) internal view returns (bool) { return getData().roles[role].hasRole[account]; } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `_msgSender()` * is missing `role`. Overriding this function changes the behavior of the {onlyRole} modifier. */ function _checkRole(bytes32 role) internal view { _checkRole(role, msg.sender); } /** * @dev Reverts with an {AccessControlUnauthorizedAccount} error if `account` * is missing `role`. */ function _checkRole(bytes32 role, address account) internal view { if (!_hasRole(role, account)) { revert IAccessControl.AccessControlUnauthorizedAccount(account, role); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function _getRoleAdmin(bytes32 role) internal view returns (bytes32) { //`NULL_ROLE`'s adminRole is always itself if (role == NULL_ROLE) { return NULL_ROLE; } return getData().roles[role].adminRole; } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. * * May emit a {RoleRevoked} event. */ function _renounceRole(bytes32 role, address callerConfirmation) internal { if (callerConfirmation != msg.sender) { revert IAccessControl.AccessControlBadConfirmation(); } //use __unsafe here, no permissions check as removing self from role __unsafe_revokeRole(role, callerConfirmation); } function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal { _checkRole(AccessControlLib._getRoleAdmin(role), msg.sender); __unsafe_setRoleAdmin(role, adminRole); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function __unsafe_setRoleAdmin(bytes32 role, bytes32 adminRole) internal { //Cannot set `NULL_ROLE` adminRole (it is always itself) if (role == NULL_ROLE) { revert AccessControlCannotSetNullRole(); } //You MAY set `NULL_ROLE` as a role's `adminRole` however bytes32 previousAdminRole = _getRoleAdmin(role); getData().roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } function _grantRole(bytes32 role, address account) internal returns (bool) { _checkRole(AccessControlLib._getRoleAdmin(role), msg.sender); return __unsafe_grantRole(role, account); } /** * @dev Attempts to grant `role` to `account` and returns a boolean indicating if `role` was granted. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function __unsafe_grantRole(bytes32 role, address account) internal returns (bool) { //Cannot assign `NULL_ROLE` to ANY address if (role == NULL_ROLE) { revert AccessControlCannotSetNullRole(); } if (!_hasRole(role, account)) { getData().roles[role].hasRole[account] = true; emit RoleGranted(role, account, msg.sender); return true; } else { return false; } } function _revokeRole(bytes32 role, address account) internal returns (bool) { _checkRole(AccessControlLib._getRoleAdmin(role), msg.sender); return __unsafe_revokeRole(role, account); } /** * @dev Attempts to revoke `role` to `account` and returns a boolean indicating if `role` was revoked. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function __unsafe_revokeRole(bytes32 role, address account) internal returns (bool) { if (_hasRole(role, account)) { getData().roles[role].hasRole[account] = false; emit RoleRevoked(role, account, msg.sender); return true; } else { return false; } } }
// SPDX-License-Identifier: MIT pragma solidity ^0.8.20; import {Strings} from "@openzeppelin/contracts/utils/Strings.sol"; import {AccessControlLib} from "./AccessControlLib.sol"; /** * @dev Library module that allows nested role checks. If an address has a role (PARENT) that is the admin of another role (CHILD), * it is assumed to also have that role (CHILD) since it can at any time grant itself such role. */ library AccessControlRecursiveLib { /** Recursive Role Checks */ /** * @dev Returns `true` if `account` has been granted `role` or `role`'s admin. */ function _hasRoleRecursive(bytes32 role, address account) internal view returns (bool) { //This terminates early and avoids gas overflow with infinite recursion if (role == AccessControlLib.NULL_ROLE) return false; if (role == AccessControlLib.DEFAULT_ADMIN_ROLE) return AccessControlLib._hasRole(role, account); return AccessControlLib._hasRole(role, account) || _hasRoleRecursive(AccessControlLib._getRoleAdmin(role), account); } /** * @dev Revert with a standard message if `_msgSender()` is missing `role` or `role`'s admin. * Overriding this function changes the behavior of the {onlyRole} modifier. * * Format of the revert message is described in {_checkRole}. * * _Available since v4.6._ */ function _checkRoleRecursive(bytes32 role) internal view { _checkRoleRecursive(role, msg.sender); } /** * @dev Revert with a standard message if `account` is missing `role` or `role`'s admin. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ */ function _checkRoleRecursive(bytes32 role, address account) internal view { if (!_hasRoleRecursive(role, account)) { revert( string( abi.encodePacked( "AccessControlRecursive: account ", Strings.toHexString(account), " is missing role (or recursive adminRole of)", Strings.toHexString(uint256(role), 32) ) ) ); } } function _setRoleAdminRecursive(bytes32 role, bytes32 adminRole) internal { _checkRoleRecursive(AccessControlLib._getRoleAdmin(role), msg.sender); AccessControlLib.__unsafe_setRoleAdmin(role, adminRole); } function _grantRoleRecursive(bytes32 role, address account) internal returns (bool) { _checkRoleRecursive(AccessControlLib._getRoleAdmin(role), msg.sender); return AccessControlLib.__unsafe_grantRole(role, account); } function _revokeRoleRecursive(bytes32 role, address account) internal returns (bool) { _checkRoleRecursive(AccessControlLib._getRoleAdmin(role), msg.sender); return AccessControlLib.__unsafe_revokeRole(role, account); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (access/IAccessControl.sol) pragma solidity ^0.8.20; /** * @dev External interface of AccessControl declared to support ERC-165 detection. */ interface IAccessControl { /** * @dev The `account` is missing a role. */ error AccessControlUnauthorizedAccount(address account, bytes32 neededRole); /** * @dev The caller of a function is not the expected one. * * NOTE: Don't confuse with {AccessControlUnauthorizedAccount}. */ error AccessControlBadConfirmation(); /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call. This account bears the admin role (for the granted role). * Expected in cases where the role was granted using the internal {AccessControl-_grantRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. * Requirements: * * - the caller must have ``role``'s admin role. */ function setRoleAdmin(bytes32 role, bytes32 adminRole) external; /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external returns (bool); /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external returns (bool); /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `callerConfirmation`. */ function renounceRole(bytes32 role, address callerConfirmation) external; }
// SPDX-License-Identifier: MIT // Originally from // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableMap.sol) pragma solidity ^0.8.20; import {EnumerableSet} from "@openzeppelin/contracts/utils/structs/EnumerableSet.sol"; import {EnumerableSetBytes4} from "./EnumerableSetBytes4.sol"; /** * @dev Library for managing an enumerable variant of Solidity's * https://solidity.readthedocs.io/en/latest/types.html#mapping-types[`mapping`] * type. * * Maps with sets as values have the following properties: * * - Entries are added, removed, and checked for existence in constant time * (O(1)). * - Entries are enumerated in O(n). No guarantees are made on the ordering. * - When all items of set are removed, key is removed. * * ```solidity * contract Example { * // Add the library methods * using EnumerableMapAddressToSetBytes4 for EnumerableMapAddressToSetBytes4.AddressToSetBytes4Map; * * // Declare a set state variable * EnumerableMapAddressToSetBytes4.AddressToSetBytes4Map private myMap; * } * ``` * * The following map types are supported: * * - `address -> Set<bytes4>` (`AddressToSetBytes4Map`) * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableMap, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableMap. * ==== */ library EnumerableMapAddressToSetBytes4 { using EnumerableSet for EnumerableSet.AddressSet; using EnumerableSetBytes4 for EnumerableSetBytes4.Bytes4Set; // To implement this library for multiple types with as little code repetition as possible, we write it in // terms of a generic Map type with bytes32 keys and values. The Map implementation uses private functions, // and user-facing implementations such as `UintToAddressMap` are just wrappers around the underlying Map. // This means that we can only create new EnumerableMaps for types that fit in bytes32. /** * @dev Query for a nonexistent map key. */ error EnumerableMapNonexistentKey(address key); struct AddressToSetBytes4Map { // Storage of keys EnumerableSet.AddressSet _keys; mapping(address key => EnumerableSetBytes4.Bytes4Set) _values; } /** * @dev Add a value to a set at `key`. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressToSetBytes4Map storage map, address key, bytes4 value) internal returns (bool) { //Add value to set bool added = map._values[key].add(value); if (added) { //Value was added, add key if non-existent map._keys.add(key); } return added; } /** * @dev Removes a value from a set at `key`. O(1). * * Returns true if the value was removed from the set, that is if it was present. */ function remove(AddressToSetBytes4Map storage map, address key, bytes4 value) internal returns (bool) { //Remove value from set bool removed = map._values[key].remove(value); if (removed) { //Value was removed, remove key if size zero if (map._values[key].length() == 0) { map._keys.remove(key); } } return removed; } /** * @dev Returns true if the key is in the map. O(1). */ function contains(AddressToSetBytes4Map storage map, address key) internal view returns (bool) { return map._keys.contains(key); } /** * @dev Returns the number of key-value pairs in the map. O(1). */ function length(AddressToSetBytes4Map storage map) internal view returns (uint256) { return map._keys.length(); } /** * @dev Returns the key-value pair stored at position `index` in the map. O(1). * * Note that there are no guarantees on the ordering of entries inside the * array, and it may change when more entries are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at( AddressToSetBytes4Map storage map, uint256 index ) internal view returns (address, EnumerableSetBytes4.Bytes4Set storage) { address key = map._keys.at(index); return (key, map._values[key]); } /** * @dev Tries to returns the value associated with `key`. O(1). * Does not revert if `key` is not in the map. */ function tryGet( AddressToSetBytes4Map storage map, address key ) internal view returns (bool, EnumerableSetBytes4.Bytes4Set storage) { return (contains(map, key), map._values[key]); } /** * @dev Returns the value associated with `key`. O(1). * * Requirements: * * - `key` must be in the map. */ function get( AddressToSetBytes4Map storage map, address key ) internal view returns (EnumerableSetBytes4.Bytes4Set storage) { if (!contains(map, key)) { revert EnumerableMapNonexistentKey(key); } return map._values[key]; } /** * @dev Return the an array containing all the keys * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the map grows to a point where copying to memory consumes too much gas to fit in a block. */ function keys(AddressToSetBytes4Map storage map) internal view returns (address[] memory) { return map._keys.values(); } }
// SPDX-License-Identifier: MIT // Originally from // OpenZeppelin Contracts (last updated v5.0.0) (utils/structs/EnumerableSet.sol) /** * We look to adapt the original OpenZeppelin EnumerableBytes4Set for the `bytes4` type */ pragma solidity ^0.8.20; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableBytes4Set for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressBytes4Set internal mySet; * } * ``` * * As of v3.3.0, sets of type `bytes4` (`bytes4Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSetBytes4 { // We can only create new EnumerableSets for types that fit // in bytes4. struct Bytes4Set { // Storage of set values bytes4[] _values; // Position is the index of the value in the `values` array plus 1. // Position 0 is used to mean a value is not in the set. mapping(bytes4 value => uint256) _positions; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes4Set storage set, bytes4 value) internal returns (bool) { if (!contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._positions[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes4Set storage set, bytes4 value) internal returns (bool) { // We cache the value's position to prevent multiple reads from the same storage slot uint256 position = set._positions[value]; if (position != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 valueIndex = position - 1; uint256 lastIndex = set._values.length - 1; if (valueIndex != lastIndex) { bytes4 lastValue = set._values[lastIndex]; // Move the lastValue to the index where the value to delete is set._values[valueIndex] = lastValue; // Update the tracked position of the lastValue (that was just moved) set._positions[lastValue] = position; } // Delete the slot where the moved value was stored set._values.pop(); // Delete the tracked position for the deleted slot delete set._positions[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes4Set storage set, bytes4 value) internal view returns (bool) { return set._positions[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function length(Bytes4Set storage set) internal view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes4Set storage set, uint256 index) internal view returns (bytes4) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes4Set storage set) internal view returns (bytes4[] memory) { return set._values; } }
{ "metadata": { "bytecodeHash": "ipfs", "useLiteralContent": true }, "optimizer": { "enabled": true, "runs": 1000000 }, "evmVersion": "paris", "viaIR": true, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } }
[{"inputs":[],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"}]
Contract Creation Code
60808060405234610016576101e5908161001c8239f35b600080fdfe6080600436101561000f57600080fd5b6000803560e01c638129fc1c1461002557600080fd5b346101ac57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101ac57602082017f8f7e2d929645ca415c0682921b343d96410da360ea90cf9706c3d0606a2b2331808252602084526040840167ffffffffffffffff948082108683111761017f57608090826040527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00809582519020167f1f931c1c00000000000000000000000000000000000000000000000000000000875260205260408620600186825416179055606081019384526020835201948186109086111761015257829394604052519020167f48e2b0930000000000000000000000000000000000000000000000000000000083526020526001604083209182541617905580f35b6024847f4e487b710000000000000000000000000000000000000000000000000000000081526041600452fd5b6024857f4e487b710000000000000000000000000000000000000000000000000000000081526041600452fd5b80fdfea26469706673582212203548fb428bbe4fbf42e086156ef4bc6ccfe69e90e69269ed4518bb70bb8d4de964736f6c63430008170033
Deployed Bytecode
0x6080600436101561000f57600080fd5b6000803560e01c638129fc1c1461002557600080fd5b346101ac57807ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffc3601126101ac57602082017f8f7e2d929645ca415c0682921b343d96410da360ea90cf9706c3d0606a2b2331808252602084526040840167ffffffffffffffff948082108683111761017f57608090826040527fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff00809582519020167f1f931c1c00000000000000000000000000000000000000000000000000000000875260205260408620600186825416179055606081019384526020835201948186109086111761015257829394604052519020167f48e2b0930000000000000000000000000000000000000000000000000000000083526020526001604083209182541617905580f35b6024847f4e487b710000000000000000000000000000000000000000000000000000000081526041600452fd5b6024857f4e487b710000000000000000000000000000000000000000000000000000000081526041600452fd5b80fdfea26469706673582212203548fb428bbe4fbf42e086156ef4bc6ccfe69e90e69269ed4518bb70bb8d4de964736f6c63430008170033
Loading...
Loading
Loading...
Loading
Multichain Portfolio | 30 Chains
Chain | Token | Portfolio % | Price | Amount | Value |
---|
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.